作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2159-2166.doi: 10.3724/SP.J.1006.2009.02159

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 河北农业大学/河北省作物种质资源重点实验室,河北保定 071001
  • 收稿日期:2009-04-10 修回日期:2009-07-24 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 马峙英,E-mail:mzhy@hebau.edu.cn,Tel:0312-7528401;王省芬,E-mail:cotton@hebau.edu.cn,Tel:0312-7528401
  • 基金资助:


Construction of Molecular Genetic Map and QTL Analysis of Fiber Quality in Cotton(Gossypium hirsutum L.)

YANG Xin-Lei,WANG Zhi-Wei,ZHANG Gui-Yin,PAN Yu-Xin,WU Li-Qiang,LI Zhi-Kun,WANG Xing-Fen,MA Zhi-Ying*   

  1. Key Laboratory of Crop Germplasm Resources of Hebei,Agricultural University of Hebei,Baoding 071001,China
  • Received:2009-04-10 Revised:2009-07-24 Published:2009-12-10 Published online:2009-10-13
  • Contact: MA Zhi-Ying,E-mail:mzhy@hebau.edu.cn,Tel:0312-7528401;WANG Xing-Fen,E-mail:cotton@hebau.edu.cn,Tel:0312-7528401


以陆地棉(Gossypium hirsutum L.)中棉所8号和海岛棉(Gossypium barbadense L.) Pima90-53组配衍生的214个单株的F2群体为材料,构建了包含110SSR标记和65AFLP标记的遗传连锁图谱。该图谱共包括42个连锁群,连锁群长度为4.5~147.3 cM,包括2~22个分子标记,标记间平均距离为11.6 cM,总长为2 030 cM,约占棉花全基因组的40.6%。应用复合区间作图法分析该组合的F2单株和F2:3家系纤维品质性状,共得到25个纤维品质数量性状基因座(QTL),其中5个与纤维长度相关s,分布在Chr.21Chr.15LG2LG12上,可解释表型变异的10.2%~35.8%4个与整齐度相关,分布在Chr.21LG9LG18LG12上,可解释表型变异的12.6%~36.6%7个与马克隆值相关,分布在Chr.9LG1LG9LG20LG12上,可解释表型变异的11.5%~26.1%7个与断裂比强度相关,分布在Chr.21Chr12Chr.8LG1LG4LG10上,可解释表型变异的16.5%~52.8%2个与伸长率相关,分布在Chr.9Chr.21上,可解释表型变异的18.1%27.1%LG9LG12Chr.21上存在QTL聚集区。

关键词: 棉花, 遗传图谱, SSR, AFLP, 纤维品质, QTL


Cotton is a leading textile fiber crop in the world and a source of secondary products such as oil, live- stock feed (cotton seed cake) and cellulose. The improvement of cotton fiber quality is becoming extremely important with the innovation of spinning technology. A genetic map is necessary not only for the reliable detection, mapping and estimation of gene effects of important agronomic traits, but also for further research on the structure, organization, evolution and function of cotton genome. In the present study, simple sequence repeats (SSRs) and amplified fragment length polymorphism (AFLP)were used to assay anF2 population from a cross between CRI8 (Gossypium hirsutum L.) and Pima90-53 (Gossypium barbadense L.). Two hundred and fourteen F2plantswere used for map construction using 110 SSRs and 65 AFLPs. This map included 175 markers distributing on 42 linkage groups, covering 2030cM, accounting for 40.6% of the cotton genome, and with an average distance of 11.6 cM between two markers. The length of linkage groups ranged from 4.5to 147.3 cM and the markers on the groups ranged from 2 to 22. The linkage map waslocated on 10 chromosomes,which were Chr.4, Chr.8, Chr.9, Chr.10, Chr.12, Chr.14, Chr.15, Chr.18, Chr.21, and Chr.25.Based on composite interval mapping, five QTLs were identified for fiber length, distributing on Chr.21, Chr.15, LG2, and LG12, explaining 10.2%–35.8% of the fiber length variance. Four QTLs were identified for length uniformity, distributing on Chr.21, LG9, LG18, and LG12, explaining 12.6%–36.6% of the fiber length uniformity variance. Seven QTLs were identified for micronaire, distributing on Chr.9, LG1, LG9, LG20, and LG12, explaining 11.5%–26.1% of the fiber micronaire variance. Seven QTLs were identified for strength, distributing on Chr.21, Chr.12, Chr.8, LG1, LG4, and LG10, explaining 16.5%–52.8% of the fiber strength variance. Two QTLs were identified for fiber elongation, distributing on Chr.9 and Chr.21, explaining 18.1% and 27.1% of the fiber elongation variance.Assembledsection of QTLs existed in LG9, LG12, and Chr.21. The present map and QTL analysis may provide a useful tool for breeders to transfer desirable traits from G. barbadense to the mainly cultivated species, G. hirsutum.

Key words: Cotton, Genetic map, SSR, AFLP, Fiber quality, QTL

[1] Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, WendelJF, Paterson AH. A detailed RFLP map ofcotton Gossypium hirsutum × Gossypium barbadense:Chromosomeorganization and evolution in a disomicpolyploid genome. Genetics, 1994, 138:829-847
[2] Han Z G,Wang C B,Song X L,Guo W Z,Guo J Y,Li C H,Chen X Y,Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439
[3] Ulloa M, Meredith WR, Shappley ZW, Kahler AL. RFLP genetic linkage maps from F2:3 populations anda joinmap of Gossypium hirsutum. Theor Appl Genet, 2002, 104:200-208
[4] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166-1174
[5] Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B,Courtois B, Cantrell RG, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploidcotton based on Gossypium hirsutum × Gossypiumbarbadense backcross population. Genome, 2003, 46:612-626
[6] Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C,Chee PW, Delmonte TA, Ding X, Garza JJ, MarlerBS, Park C, Pierce GJ, Rainey KM, Rastogi VK,Schulze SR, Trolinder NL, Wendel JF, Wilkins TA,Williams-Coplin TD, Wing RA, Wright RJ, Zhao X,Zhu L, Paterson AH. A 3347-locus geneticrecombination map of sequence-tagged sites revealsfeatures of genome organization, transmission andevolution of cotton (Gossypium). Genetics, 2004, 166:389-417
[7] Nguyen TB, Giband M, Brottier P, Risterucci AM, LacapeJM. Wide coverage of the tetraploid cottongenome using newly developed microsatellite markers.Theor Appl Genet, 2004, 109:167-175
[8] Guo W Z, CaiC P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541
[9] Guo W Z, CaiC P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9:314
[10] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z,Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integra Plant Biol, 2007, 49: 716-724
[11] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using theinterspecific cross of Gossypium hirsutum×Gossypium barbadense. Euphytica, 2006, 153: 181-197
[12] Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M,Gourlot JP, Gawryziak G,Roques S, Hau B. QTL analysis of cotton fiber quality using multipleGossypium hirsutum×Gossypium barbadense backcrossgenerations. Crop Sci, 2005, 45:123-140
[13] Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, StellyDM, Chen ZJ. Genetic mapping and QTLanalysis of fiber-related traits in cotton (Gossypium).Theor Appl Genet, 2004, 108:280-291
[14] Lin ZX, He DH, Zhang XL, Nie YC, Guo XP, Feng CD,Stewart JMcD. Linkage map construction andmapping QTLs for cotton fiber quality using SRAP,SSR and RAPD. Plant Breed, 2005, 124:180-187
[15] Shen X L, Guo W Z, Zhu X F, Yuan Y L, Yu Z, KohelJ, Zhang T Z.Molecular mapping of QTLs for fiber qualities in three diverse linesin Upland cotton using SSR markers.Mol Breed, 2005, 15: 169-181
[16] Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ. Molecular tagging of a major QTL for fiber strengthin upland cotton and its marker-assisted selection.Theor Appl Genet, 2003, 106:262-268
[17] Paterson AH, Brubaker CL, Wendel JF. A rapidmethod for extraction of cotton (Gossypium spp.)genomic DNA suitable for RFLP and PCR analysis.Plant Mol Biol Rep, 1993, 11:112-127
[18] Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci (棉花学报), 2000, 12: 267-269(in Chinese with English abstract)
[19] Vuylsteke M, Peleman J D, van Eijk M JT. AFLP technology for DNA fingerprinting. Nature Protocols, 2007, 2: 1387-1398
[20] Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ,Lincoln SE, Newburg I. MAPMAKER: Aninteractive computer package for constructing primarygenetic linkage maps of experimental and naturalpopulations. Genomics, 1987, 1:174-181
[21] Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered,2002,93: 77-78
[22] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 user manual. North Carolina State University, 2005
Wang K, Song X L, Han Z G, Guo W Z, JohnZYu,Sun J, Pan J J, KohelJ, Zhang T Z. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73-80
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[11] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[14] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[15] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
Full text



No Suggested Reading articles found!