欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 267-275.doi: 10.3724/SP.J.1006.2010.00267

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦苗期光合作用及其相关性状的QTL分析

梁燕1,张坤普2,赵亮1,梁雪1,张雯婷1,孙晓琳1,孟庆伟1,田纪春1,*,赵世杰1,*   

  1. 1山东农业大学国家作物生物学重点实验室, 山东泰安 271018;2 中国科学院遗传与发育生物学研究所,北京 100101
  • 收稿日期:2009-05-26 修回日期:2009-10-02 出版日期:2010-02-10 网络出版日期:2010-01-10
  • 通讯作者: 赵世杰, E-mail: sjzhao@sdau.edu.cn; Tel: 0538-8249767; 田纪春, E-mail: jctian@sdau.edu.cn; Tel: 0538-8242040
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118301)和国家高技术研究发展计划(863计划)项目(2006AA100101)资助。

Analysis of QTLs Associated with Photosynthesis Characteristics in Wheat Seedlings

LIANG Yan1,ZHANG Kun-Pu2,ZHAO Liang1,LIANG Xue1,ZHANG Wen-Ting1,SUN Xiao-Lin1,MENG Qing-Wei1,TIAN Ji-Chun1,*,ZHAO Shi-Jie1,*
  

  1. 1 State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; 2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2009-05-26 Revised:2009-10-02 Published:2010-02-10 Published online:2010-01-10
  • Contact: ZHAO Shi-Jie, E-mail: sjzhao@sdau.edu.cn; Tel: 0538-8249767;WANG Ji-Chun, E-mail: jctian@sdau.edu.cn; Tel: 0538-8242040

摘要:

将小麦品种花培3号和豫麦57构建的DH群体的168个株系及其亲本,盆栽于两个环境中,利用324个SSR标记位点构建遗传图谱,对单叶净光合速率及相关参数、叶绿体色素含量和叶绿素荧光参数进行QTL定位和分析。利用基于混合线性模型的QTLNetwork 2.0,共检测到17个加性效应和20对上位性效应位点,其中所有加性效应位点和16对上位性效应位点具有环境互作效应。相关性较高的性状间有一些共同的QTL,表现出一因多效或者紧密连锁效应。在5D染色体上的Xwmc215Xgdm63区段,检测到控制叶绿素a、叶绿素b和类胡萝卜素含量的3个主效QTL,各位点的遗传效应贡献率较大,增效基因均来源于花培3号,适用于分子标记辅助选择和聚合育种。另外,该区段与控制单叶净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和胞间CO2浓度与胞外CO2浓度比值(Ci/Cr的QTL的定位区间相近。位于5B染色体控制胞间CO2浓度的QTL是个微效基因,但是QTL与两种环境的互作效应表现的遗传贡献比较大。)

关键词: 净光合速率, 叶绿素含量, 叶绿素荧光参数, QTL定位, 小麦

Abstract:

For the purpose of detecting QTLs associated with photosynthetic related traits, a set of 168 doubled haploid (DH) lines derived from the cross between Huapei 3 and Yumai 57 was tested with 324 SSR markers covering the whole genome of wheat (Triticum aestivum L.). The net photosynthetic rate, gas changes, chlorophyll content, and chlorophyll fluorescence in leaves were investigated in both DH population and the parents at seedling stage. QTL analysis was carried out using QTLNetwork version 2.0 based on the mixed linear model. A total of 17 additive QTLs and 20 pairs of epistatic QTLs were detected for the photosynthetic related traits. All additive QTLs and 16 pairs of epistatic QTLs had interactions with environments. In agreement with the high correlations of phenotypes, several traits shared common QTL regions, and showed tight linkages of these QTLs or pleiotropisms. In the interval between Xwmc215 and Xgdw63 on chromosome 5D, three major additive QTLs for chlorophyll a, chlorophyll b, and carotinoid contents explained the phenotypic variations by 18.23%, 10.40%, and 27.25%, respectively, whose positive alleles were all originated from Huapei 3. These QTLs are favorable for marker-assisted selection. In addition, this region was near the QTLs for net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the ratio of Cito gas conductance (Cr). The QTL for Ci on chromosome 5B was a minor locus but explained relatively great phenotypic variation in the interactions between QTLs and environments.

Key words: Photosynthetic rate, Chlorophyll content, Chlorophyll fluorescence parameters, QTL mapping, Wheat

[1] Teng S, Qian Q, Zeng D L, Kunihiro Y, Fujimoto K, Huang D, Zhu L H. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 2004, 135: 1-7

[2] Hu M-L(胡茂龙), Wang C-M(王春明), Yang Q-H(杨权海), Zhai H-Q(翟虎渠), Lu W(陆巍), Zhang R-X(张荣铣), Wan J-M(万建民). QTL analysis for traits associated with photosynthetic functions in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2005, 32(8): 818-824 (in Chinese with English abstract)

[3] Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol, 2007, 49: 646-654

[4] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766

[5] Xue G P, Lynne McIntyre C, Chapman S, Bower Neil I, Way H, Reverter A, Clarke B, Shorter R. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Plant Mol Biol, 2006, 61: 863-881

[6] Verma Vinesh, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S, Snape J W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004, 135: 255-263

[7] Cao W-D(曹卫东), Jia J-Z(贾继增), Jin J-Y(金继运). Identification and interaction analysis of QTL for chlorophyll content in wheat seedling. Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 10(5): 473-478 (in Chinese with English abstract)

[8] Su J Y, Tong Y P, Liu Q Y, Li B, Jing R L, Li J Y, Li Z S. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat. J Integr Plant Biol, 2006, 48: 938-944

[9] Yang D L, Jing R L, Chang X P, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics-584, 2007, 176: 571

[10] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet,1999, 99: 1255-1264

[11] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274

[12] Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese)

[13] Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed (中国种业), 2004, (4): 54 (in Chinese)

[14] Zhang Y-H(张玉红), Liang Y(梁燕), Chen L-P(陈利平), Zhao S-J(赵世杰). Experimental design and implementation for gene assignment of photosynthetic characters of winter wheat DH seedlings in phytotron. Shandong Agric Sci (山东农业科学), 2008, (8): 106-107, 109 (in Chinese with English abstract)

[15] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591-592
[16] Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A genetic map constructed using a doubled haploid population derived from two elite chinese common wheat varieties. J Integr Plant Biol, 2008, 50: 941-950
[17] Zhang K P, Tian J C, Zhao L, Liu B, Chen G F. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica, 2009, 135: 257-265
[18] Zhang K-P(张坤普), Zhao L(赵亮), Hai Y(海燕), Chen G-F(陈广凤), Tian J-C(田纪春). QTL mapping for adult-plant resistance to powdery mildew, lodging resistance and internode length below spike in wheat. Acta Agron Sin (作物学报), 2008, 34(8): 1350-1357 (in Chinese with English abstract)
[19] Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)
[20] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet,2002, 105: 921-936
Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet,2003, 106: 1032-1040
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!