作物学报 ›› 2010, Vol. 36 ›› Issue (4): 636-644.doi: 10.3724/SP.J.1006.2010.00636
胡秀丽1,李艳辉1,杨海荣1,刘全军1,李潮海2,*
HU Xiu-Li1,LI Yan-Hui1,YANG Hai-Rong1,LIU Qun-Jun,LI Chao-Hai2,*
摘要:
为确定热休克蛋白70 (HSP70)提高作物耐干旱高温复合胁迫的机制,对干旱、高温反应不同的4个玉米品种的生理特性进行了研究。结果显示:(1) 在干旱、高温、干旱高温复合胁迫条件下,叶片丙二醛(MDA)增加量以隆玉602最低,驻玉309最高;在干旱胁迫条件下,郑单958叶片MDA含量低于浚单20,而在高温胁迫条件下,浚单20叶片MDA含量低于郑单958。(2) 在干旱、高温、干旱高温复合胁迫条件下,隆玉602、郑单958、浚单20三个品种叶片抗氧化防护系统如抗坏血酸过氧化物酶(APX)、谷胱苷肽还原酶(GR)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性增加量均高于驻玉309;在干旱条件下,郑单958叶片APX、GR、SOD、CAT活性增加量显著高于浚单20,在高温条件下,两个品种的表现则相反;在干旱高温复合胁迫条件下,隆玉602 叶片APX、GR、SOD活性增加量显著高于郑单958和浚单20。(3) HSP70抑制剂斛皮素(Quercetin, Q)预处理显著抑制了3种胁迫诱导的4个品种叶片抗氧化酶活性的增加。这些研究结果暗示HSP70提高了干旱、高温、干旱高温复合胁迫诱导的抗氧化防护酶活性,且APX、GR、SOD 这3个抗氧化防护酶活性可以作为评价作物耐干旱、高温和干旱高温复合胁迫的生化指标。
[1]Thomson A M, Brown R A, Rosenberg N J, Izaurralde R C, Benson V. Climate change impacts for the conterminous USA: An integrated assessment. Part 3. Dryland production of grain and forage crops. Clim Change, 2005, 69: 43-65 [2]Bray E A, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R, eds. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, 2000. pp 1158-249 [3]Pingali P L. CIMMYT 1999-2000 Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. Mexico: CIMMYT, 2001. pp 1-60 [4]Dat J F, Pellinen R, Beeckman T, Cotte B V D, Langebartels C, Kangasja J, Inze R, Breusegem F V. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003,33: 621-632 [5]Neil S L, Desikan R, Hancock J T. Hydrogen peroxide signling. Curr Opin Plant Biol, 2002, 5: 388-395 [6]Volkov R A, Panchuk I I, Mullineaux P M, Schöffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol, 2006, 61: 733-46 [7]Hu X L, Jiang M Y, Zhang J H, Tan M P, Zhang A Y. Cross-talk between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Grow Regul, 2008, 55: 183-198 [8]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399 [9]Basha E, Lee G J, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins. Eur J Biochem, 2004, 271: 1426-1436 [10]Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsisgene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J, 2003, 34: 868-887 [11] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151 [12] Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696 [13] Cho E K, Choi Y J. Anuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett, 2009, 31: 597-606 [14] Dat J, Vandenabeele S, VranováE, Van Montagu M, InzéD, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci, 2000, 57: 779-795 [15] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2000, 7: 405-410 [16] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activies of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410 [17] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254 [18] Heath R L, Parker L. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biophys, 1968, 25: 189-198 [19] Orozco-Cárdenas M L, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway.Proc Natl Acad Sci USA, 1999, 96-6557: 6553 [20] Liang Y(梁颖), Wang S-G(王三根). The protection function of Ca2+ on the membrane of rice seedlings under low temperature stress. Acta Agron Sin 作物学报), 2001, 27(1): 59-63 (in Chinese with English abstract) [21] Ma S-Y(马淑英), Zhao M(赵明). Regulations of calcium on the salt tolerance in Arabidopsis. Acta Agron Sin (作物学报), 2006, 32(11): 1706-1711 (in Chinese with English abstract) [22] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151 [23] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol, 1998, 118: 1455-1461 [24] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-125 [25] Gulli M, Rampino P, Lupotto E, Marmiroli N, Perrotta C. The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. J Cereal Sci, 2005, 42: 25-31 [26] Guo S H, Wharton W, Moseley P, Shi H L. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress & Chaperones, 2007, 12: 245-254 [27] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125: 443-451 [28] Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. Adv Exp Med Biol, 2007, 594: 89-99 [29] Wang C R, Wang X R, Tian Y, Xue Y G, Xu X H, Sui Y X, Yu H X. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicol Environ Saf, 2008, 71: 685-691 [30] Wang C R, Wang X R, Tian Y, Yu H X, Gu X Y, Du W C, Zhou H. Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem, 2008, 27: 970-977 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[9] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[10] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[11] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[12] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
|