欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 636-644.doi: 10.3724/SP.J.1006.2010.00636

• 耕作栽培·生理生化 • 上一篇    下一篇

HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力

胡秀丽1,李艳辉1,杨海荣1,刘全军1,李潮海2,*   

  1. 1河南农业大学生命科学学院;2河南农业大学农学院,河南郑州450002
  • 收稿日期:2009-08-26 修回日期:2009-12-22 出版日期:2010-04-12 网络出版日期:2010-02-05
  • 通讯作者: 李潮海, E-mail: Chaohai@371.net
  • 基金资助:

    本研究由国家自然科学基金项目(30800667),第44批中国博士后科学基金项目(20080440824),第2批中国博士后科学基金特别资助项目(200902357)和河南省教育厅自然科学基金项目(2008A180011)资助。

Heat Shock Protein 70 May Improve the Ability of Antioxidant Defense Induced by the Combination of Drought and Heat in Maize Leaves

HU Xiu-Li1,LI Yan-Hui1,YANG Hai-Rong1,LIU Qun-Jun,LI Chao-Hai2,*   

  1. 1 College of Life Science, Henan Agricultural University; 2 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2009-08-26 Revised:2009-12-22 Published:2010-04-12 Published online:2010-02-05
  • Contact: LI Chao-Hai,E-mail: Chaohai@371.net

摘要:

为确定热休克蛋白70 (HSP70)提高作物耐干旱高温复合胁迫的机制,对干旱、高温反应不同的4个玉米品种的生理特性进行了研究。结果显示:(1) 在干旱、高温、干旱高温复合胁迫条件下,叶片丙二醛(MDA)增加量以隆玉602最低,驻玉309最高;在干旱胁迫条件下,郑单958叶片MDA含量低于浚单20,而在高温胁迫条件下,浚单20叶片MDA含量低于郑单958(2) 在干旱、高温、干旱高温复合胁迫条件下,隆玉602、郑单958、浚单20三个品种叶片抗氧化防护系统如抗坏血酸过氧化物酶(APX)、谷胱苷肽还原酶(GR)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性增加量均高于驻玉309在干旱条件下,郑单958叶片APXGRSODCAT活性增加量显著高于浚单20,在高温条件下,两个品种的表现则相反;在干旱高温复合胁迫条件下,隆玉602 叶片APXGRSOD活性增加量显著高于郑单958和浚单20(3) HSP70抑制剂斛皮素(Quercetin, Q)预处理显著抑制了3种胁迫诱导的4个品种叶片抗氧化酶活性的增加。这些研究结果暗示HSP70提高了干旱、高温、干旱高温复合胁迫诱导的抗氧化防护酶活性,且APXGRSOD 3个抗氧化防护酶活性可以作为评价作物耐干旱、高温和干旱高温复合胁迫的生化指标。

关键词: 玉米, 干旱, 高温, 复合胁迫, 热休克蛋白

Abstract:

In order to determine the mechanism of heat shock protein (HSP70) increasing crops endurance to the combination of drought and heat, we investigated the physiological characteristics of four maize varieties with different responses to drought and heat stresses. The results are as follows: (1) Under drought, heat, the combination of drought and heat, the increase of malondialdelehyde (MDA) content in leaf was the lowest in Zhuyu 309 without endurance to three stresses and the highest in Longyu 602 with endurance to three stresses; under drought, leaf MDA increase in Zhengdan958 with drought-endurance was less than that in Xundan 20 leaves with heat-endurance; under heat, leaf MDA increase was more in Zhengdan 958 than in Xundan20. (2) In Zhengdan958, Xundan20, Longyu602 leaves, the increase of ascorbate peroxidese (APX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) activities was more than that in Zhuyu 309 leaves under drought, heat, the combination of drought and heat; under drought, APX, GR, SOD, CAT activities of Zhengdan 958 leaves increased significantly more than those of Xundan 20’, but those were contrary under heat; under the combination of drought and heat, APX, GR, SOD activities of Longyu 602 leaves increased significantly more than those of Zhengdan 958 and Xundan 20. (3) The pretreatment with HSP70 inhibitor quercetin (Q) significantly inhibited the increase of antioxidant enzymes activities in leaves of 4 maize varieties exposed to the three stresses. These results suggested that HSP70 involved in the increase of antioxidant enzyme activity in leaves of 4 maize varieties exposed to drought, heat and their combination, and APX, GR, SOD activities could be used as chemical and biological indicators to evaluate the crop endurance to drought, heat, and the combination of drought and heat stresses.

Key words: Maize(Zea mays L.), Drought, Heat, Combination stress, HSP70

[1]Thomson A M, Brown R A, Rosenberg N J, Izaurralde R C, Benson V. Climate change impacts for the conterminous USA: An integrated assessment. Part 3. Dryland production of grain and forage crops. Clim Change, 2005, 69: 43-65

[2]Bray E A, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R, eds. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, 2000. pp 1158-249

[3]Pingali P L. CIMMYT 1999-2000 Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. Mexico: CIMMYT, 2001. pp 1-60

[4]Dat J F, Pellinen R, Beeckman T, Cotte B V D, Langebartels C, Kangasja J, Inze R, Breusegem F V. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003,33: 621-632

[5]Neil S L, Desikan R, Hancock J T. Hydrogen peroxide signling. Curr Opin Plant Biol, 2002, 5: 388-395

[6]Volkov R A, Panchuk I I, Mullineaux P M, Schöffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol, 2006, 61: 733-46

[7]Hu X L, Jiang M Y, Zhang J H, Tan M P, Zhang A Y. Cross-talk between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Grow Regul, 2008, 55: 183-198

[8]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399

[9]Basha E, Lee G J, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins. Eur J Biochem, 2004, 271: 1426-1436

[10]Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsisgene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J, 2003, 34: 868-887

[11] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151

[12] Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696

[13] Cho E K, Choi Y J. Anuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett, 2009, 31: 597-606

[14] Dat J, Vandenabeele S, VranováE, Van Montagu M, InzéD, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci, 2000, 57: 779-795

[15] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2000, 7: 405-410

[16] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activies of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410

[17] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254

[18] Heath R L, Parker L. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biophys, 1968, 25: 189-198

[19] Orozco-Cárdenas M L, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway.Proc Natl Acad Sci USA, 1999, 96-6557: 6553

[20] Liang Y(梁颖), Wang S-G(王三根). The protection function of Ca2+ on the membrane of rice seedlings under low temperature stress. Acta Agron Sin 作物学报), 2001, 27(1): 59-63 (in Chinese with English abstract) 

[21] Ma S-Y(马淑英), Zhao M(赵明). Regulations of calcium on the salt tolerance in Arabidopsis. Acta Agron Sin (作物学报), 2006, 32(11): 1706-1711 (in Chinese with English abstract)

[22] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151

[23] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol, 1998, 118: 1455-1461

[24] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-125

[25] Gulli M, Rampino P, Lupotto E, Marmiroli N, Perrotta C. The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. J Cereal Sci, 2005, 42: 25-31

[26] Guo S H, Wharton W, Moseley P, Shi H L. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress & Chaperones, 2007, 12: 245-254

[27] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125: 443-451

[28] Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. Adv Exp Med Biol, 2007, 594: 89-99

[29] Wang C R, Wang X R, Tian Y, Xue Y G, Xu X H, Sui Y X, Yu H X. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicol Environ Saf, 2008, 71: 685-691

[30] Wang C R, Wang X R, Tian Y, Yu H X, Gu X Y, Du W C, Zhou H. Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem, 2008, 27: 970-977
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[11] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!