作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1506-1511.doi: 10.3724/SP.J.1006.2010.01506
陈代波,占小登**,吴超,沈希宏,吴伟明,高志强,程式华*,曹立勇*
CHEN Dai-Bo,ZHAN Xiao-Deng**,WU Chao,SHEN Xi-Hong,WU Wei-Ming,GAO Zhi-Qiang,CHENG Shi-Hua*,CAO Li-Yong*
摘要: 花器官发育异常突变体是研究植物花发育分子机理的重要材料。本研究在特种栽培稻品种“鸭血糯”中发现一个长护颖自然突变体,命名为Osleg (Oryza sativa long empty glumes)。组织细胞学分析表明,该突变体护颖的远轴表皮细胞凸凹不平,毛状体较多,许多瘤状体轴向平行排列,与外稃表皮细胞结构相似。遗传分析结果表明,该突变性状受一对隐性基因控制。将Osleg纯合体与籼稻品种9311杂交构建F2定位群体,利用已公布的水稻SSR标记和自行设计的STS标记对突变位点进行基因定位,最终将OsLEG定位在水稻7号染色体短臂上的LC15和LC25标记之间,物理距离约207 kb,为进一步克隆OsLEG基因和研究禾本科植物花器官的分子调控机理提供了重要科学依据。
[1] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development [J].Nature.1991, 353:31-37 [2] Colombo L, Franken J, Koetje E, van Went J, Dons H J M, Angenent G C, van Tunen A J. The petunia MADS box gene FBP11 determines ovule identity [J].Plant Cell.1995, 7:1859-1868 [3] Angenet G C, Franken J, Busscher M, van Dijken A, van Went L, Dons H J M, van Tunen J. A novel class of MADS box genes is involved in ovule development in petunia [J].Plant Cell.1995, 7:1569-1582 [4] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS- box genes [J].Nature.2000, 405:200-203 [5] Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Munster T, Winter K U, Saedler H. A short history of MADS-box genes in plants [J].Plant Mol Biol.2000, 42:115-149 [6] Lohmann J U, Weigel D. Building beauty: the genetic control of floral patterning [J].Dev Cell.2002, 2:135-142 [7] Lim J, Moon Y H, Ann G, Jang S K. Two rice MADS domain proteins interact with OsMADS1 [J].Plant Mol Biol.2000, 44:513-527 [8] Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol, 2000, 41: 710-718 [9] Jia H, Chen R, Cong B, Cao K, Sun C, Luo D. Characterization and transcriptional profiles of two rice MADS-box genes [J].Plant Sci.2000, 155:115-122 [10] Moon Y H, Jung J Y, Kang H G, An G. Identification of a rice APETALA3 homologue by yeast two-hybrid screening [J].Plant Mol Biol.1999, 40:167-177 [11] Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice [J].Development.2003, 130:705-718 [12] Chung Y Y, Kim S R, Kang H R. Characterization of two rice MADS-box genes homologous to GLOBOSA [J].Plant Sci.1995, 109:45-56 [13] Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H K. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [J].Plant Cell.2004, 16:500-509 [14] Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants [J].Plant Mol Biol.1998, 38:1021-1029 [15] Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa [J].Plant Cell.2006, 18:15-28 [16] Lopez-Dee Z P, Wittich P, Enrico Pe M, Rigola D, Buono I D, Gorla M S, Kater M M, Colombo L. OSMADS13, a novel rice MADS-box gene expressed during ovule development [J].Dev Genet.1999, 25:237-244 [17] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development [J].Plant Cell.2000, 12:871-884 [18] Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs [J].Plant J.2005, 43:915-928 [19] Lu Y-J(卢扬江), Zheng K-L(郑康乐). A simple method for isolation of rice DNA. Chin J Rice Sci (中国水稻科学), 1992, 6(1): 47-48 (in Chinese) [20] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregating populations [J].Proc Natl Acad Sci USA.1991, 88:9828-9832 [21] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J].Genomics.1987, 1:174-181 [22] Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H Y. Gene- tics and evolution of inflorescence and flower development in grasses [J].Plant Cell Physiol.2005, 46:69-78 [23] Zanis M J. Grass spikelet genetics and duplicate gene comparisons [J].Int J Plant Sci.2007, 168:93-110 [24] Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots [J].Mol Cell.2000, 5:569-579 [25] Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis [J].Development.2004, 131:6083-6091 [26] Thompson B E, Hake S. Translational biology: from Arabidopsis flowers to grass Inflorescence architecture [J].Plant Physiol.2009, 149:38-45 [27] Sajo M G, Longhi-Wagner H M, Rudall P J. Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet [J].Plant Syst Evol.2008, 275:245-255 [28] Preston J C, Christensen A, Malcomber S T, Kellogg E A. MADS-box gene expression and implications for developmental origins of the grass spikelet [J].Am J Bot.2009, 96:1419-1429 [29] Wang H J, Huang X Q, Roder M S, Borner A. Genetic mapping of loci determining long glumes in the genus Triticum [J].Euphytica.2002, 123:287-293 [30] Watanabe N, Imamura I. Genetic control of long glume phenotype in tetraploid wheat derived from Triticum petropavlovskyi Udacz [J].et Migusch. Euphytica.2002, 128:211-217 [31] Watanabe N. Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosomes [J].Euphytica.1999, 106:39-43 [32] Arber A. The Gramineae: a study of cereal, bamboo, and grasses [J].Nature.1935, 136:317-319 [33] Callis J, Vierstra R D. Protein degradation in signaling [J].Curr Opin Plant Biol.2000, 3:381-386 |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[4] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[5] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[6] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[7] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[8] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[9] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[10] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[11] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[12] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
[13] | 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661. |
[14] | 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. |
[15] | 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567. |
|