欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 177-181.doi: 10.3724/SP.J.1006.2011.00177

• 研究简报 • 上一篇    下一篇

外源一氧化氮供体SNP对水稻叶片中由硒引起的脂质过氧化的调节作用

肖强1,杨曙1,郑海雷2,*   

  1. 1 湖北民族学院 / 生物资源保护与利用湖北省重点实验室, 湖北恩施445000; 2 厦门大学生命科学学院, 福建厦门361005
  • 收稿日期:2010-05-10 修回日期:2010-09-19 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 基金资助:

    本研究由国家自然科学基金项目(30670317), 湖北省教育厅中青年人才项目(Q20092901), 国家民委科研项目(09HB02), 湖北民族学院博士启动基金项目和湖北民族学院校内青年科研项目(MYQ2006032)资助。

Effects of Exogenous Nitric Oxide Donor SNP on Lipid Peroxidation Caused by Selenium in Rice Seedlings

XIAO Qiang1,YANG Shu1,ZHENG Hai-Lei2,*   

  1. 1 Key Laboratory of Biological Resources Protection and Utilization of Hubei Province / Hubei Institutes for Nationalities, Enshi 445000, China; 2 School of Life Sciences, Xiamen University, Xiamen 361005, China
  • Received:2010-05-10 Revised:2010-09-19 Published:2011-01-12 Published online:2010-11-16

摘要: 一氧化氮(nitric oxide, NO)是植物中一种重要的信号分子, 在诱导种子萌发, 影响植物生长发育, 促进植物细胞衰亡等方面发挥着重要作用。然而对于外源NO是否参与了Se诱导的脂质过氧化调节过程仍不为人知。我们研究了0.2 μmol L-1和20 μmol L-1Na2SeO3及一氧化氮供体硝普钠(sodium nitroprusside, SNP)处理对水稻叶片叶绿素、H2O2和硫代巴比妥酸反应产物(Thiobarbituric Acid Reactive Substances, TBARS)含量, 愈创木酚过氧化物酶(guaiacol peroxidase, GPX)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)以及抗坏血酸过氧化物酶(ascorbate peroxidase, APX)活性等生理生化指标的影响。结果表明, 1 μmol L-1SNP处理促进GPX、APX和CAT活性, 缓解膜脂过氧化, 降低TBARS含量; 显著提高0.2 μmol L-1Na2SeO3处理下水稻叶片中叶绿素含量。在20 μmol L-1Na2SeO3处理下, 外加1 μmol L-1SNP更加显著促进GPX和CAT活性, 与此同时明显降低20 μmol L-1Na2SeO3处理引起的H2O2含量上升, 并降低TBARS含量。NO对植物中由Se引起的脂质过氧化具有调节作用。

关键词: 水稻, SNP, 脂质过氧化

Abstract: Nitric oxide (NO) is a bioactive molecule that has been suggested to act as a signaling molecular in plants. It induces germination, affects plant growth and development, and promotes plant cell death. NO is also involved in plant response to heat, salinity, ultraviolet-B, and heavy metal stresses. It is known that some effects of NO may relate to the regulation of reactive oxygen species (ROS) metabolism by means of affecting activities of catalase (CAT) with hemachrome iron, and/or guaiacol peroxidase (GPX) with none-hemachrome iron. However, whether NO regulates lipid peroxidation in rice seedlings induced by selenium is not yet understood. In this article, we reported some regulative  effects of exogenous nitric oxide donor SNP on oxidative stresses induced by selenium in rice seedlings. The contents of chlorophyll, H2O2, TBARS and the activities of GPX, superoxide dismutase (SOD), CAT and ascorbate peroxidase (APX) in rice seedlings treated with a varying concentrations of seleniumand 1 μmol L-1SNP were investigated. The results showed that the content of chlorophyll increased by treatment with SNP in 0.2 μmol L-1Na2SeO3 group. SNP alleviated significantlythe lipid peroxidation in rice seedlings via promoting GPX, APX and CAT activities in rice leaf. In 20 μmol L-1Na2SeO3 treated rice seedlings, SNPalleviated significantlyTBARScontent and the increase of H2O2 content that resulted from high selenium stress via promoting GPX, especially APX and CAT activities. Taken together, our results suggested that NO regulates lipid peroxidation caused by selenium in rice seedlings.

Key words: Oryza sativa, Selenium, Sodium nitroprusside, Lipid peroxidation

[1]Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants. New Phytol, 2003, 159: 11–35
[2]Clark D, Durner J, Navarre D A, Klessig D F. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact, 2000, 13: 1380–1384
[3]Cheng F Y, Hsu S Y, Kao C H. Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Regul, 2002, 38: 265–272
[4]Kopyra M, Gwózdz E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem, 2003, 41: 1011–1017
[5]Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou J P, Pugin A, Wendehenne D. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol, 2009, 149: 1302–1315
[6]Xiao Q, Ru Q M, Wu F H, Huang X, Pei Z M, Zheng H L. Nitric oxide alleviates oxidative stress caused by lanthanum in rice leaves. J Rare Earths, 2007, 25: 631–636
[7]Xue Q-L(薛秦麟), Hou S-F(侯少范), Tan J-A(谭见安), Liu G-L(刘更另). Antioxidant effect of Se in higher plants. Chin Sci Bull (科学通报), 1993, 38(3): 274–277 (in Chinese)
[8]Sors T G, Ellis D R, Salt D E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res, 2005, 86: 373–389
[9]Rios J J, Blasco B, Cervilla L M, Rosales M A, Sanchez-Rodriguez E, Romero L, Ruiz J M. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol, 2009, 154: 107–116
[10]Liu K-L(刘开力), Han H-R(韩航如), Xu Y-J(徐颖洁), Ling T-F(凌腾芳), Liu Z-B(刘志兵), Sun Y-G(孙永刚), Hua R(花榕), Shen W-B(沈文飚). Exogenous nitric oxide alleviates salt stress-induced membrane lipid peroxidation in rice seedling roots. Chin J Rice Sci (中国水稻科学), 2005, 19(4): 333–337 (in Chinese with English abstract)
[11]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15
[12]Mukherjee S P, Choudhuri M A. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol Plant, 1983, 58: 166–170
[13]Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catase. J Exp Bot, 1981, 32: 93–101
[14]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72: 248–254
[15]Beauchamp C, Fridovich I. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Anal Biochem, 1971, 44: 276–287
[16]Ruan H H, Shen W B, Ye M B, Xu L L. Protective effects of nitric oxide on salt stress-induced oxidative damages to wheat (Triticum aestivum L.) leaves. Chin Sci Bull, 2002, 47: 677–681
[17]Chance B, Maehly A. Assay of catalases and peroxidase methods. Method Enzymol, 1955, 2: 764–775
[18]Parida, A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol, 2004, 161: 531–542
[19]Lin K-F(林匡飞), Xu X-Q(徐小清), Jin X(金霞) , Shao Z-H(邵志慧), Xiang Y-L(项雅玲). Eco-toxicological effects of selenium and its critical value on Oryza sativa. Chin J Appl Ecol (应用生态学报), 2005, 16(4): 678–682 (in Chinese with English abstract)
[20]Delledonne M, Xia Y J, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585–588
[21]Lum H K, Lee C H, Butt Y K C, Lo S C L. Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). Nitric Oxide, 2005, 12: 220–230
[22]Takahashi S, Yamasaki H. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett, 2002, 512: 145–148
[23]Wu Y-Y(吴永尧), Lu X-Y(卢向阳), Peng Z-K(彭振坤), Luo Z-M(罗泽民). Effect of Se on physiological and biochemical characters of paddy rice. Sci Agric Sin (中国农业科学), 2000, 33(1): 100–103 (in Chinese with English abstract)
[24]Laxalt A M, Beligni M V, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol, 1997, 103: 643–651
[25]Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 1999, 208: 337–344
[26]Jasid S, Simontacchi M, Bartoli C G, Puntarulo S. Chloroplasts as a nitric oxide cellular source-effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol, 2006, 142: 1246–1255
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!