作物学报 ›› 2011, Vol. 37 ›› Issue (02): 224-234.doi: 10.3724/SP.J.1006.2011.00224

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 山东省农业科学院作物研究所,山东济南 250100
  • 收稿日期:2010-06-01 修回日期:2010-09-24 出版日期:2011-02-12 网络出版日期:2010-12-15
  • 通讯作者: LI Ru-Yu, E-mail:li_ruyu@sina.com, Tel: 13606373889
  • 基金资助:

    The study was supported by a grant from the National Science and Technology Support Program (2009BADA7B00).

Assessment of Genetic Diversity in Chinese Sorghum Landraces Using SSR Markers as Compared with Foreign Accessions

ZHANG Han,WANG Jian-Cheng,WANG Dong-Jian,YAO Feng-Xia,XU Jin-Fang,SONG Guo-An,GUAN Yan-An,LI Ru-Yu*   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
  • Received:2010-06-01 Revised:2010-09-24 Published:2011-02-12 Published online:2010-12-15
  • Contact: LI Ru-Yu, E-mail:li_ruyu@sina.com, Tel: 13606373889

摘要: 利用32个高粱(Sorghum bicolor L.)核基因组多态性SSR(simple sequence repeats)位点,以69份国外品种为对照,对12个地区的184份中国高粱地方品种进行了遗传多样性分析。研究结果表明,中国高粱的遗传多样性明显低于国外高粱。中国高粱和国外高粱的等位基因丰度(Rs)和基因多样性(He)分别为9.81、0.629和11.52、0.745。中国高粱的遗传多样性明显低于东非(He=0.732)、北美(He=0.707)和南亚(He=0.712)高粱,与南非高粱相当(He=0.609)。不同地区中国高粱地方品种遗传变异水平存在明显差异,12个地区高粱种质等位基因丰度在3.64~4.88之间,基因多样性值在0.517~0.714之间。吉林高粱地方品种遗传变异最为丰富(He=0.714),与北美、南亚高粱相当。中国高粱与国外高粱之间遗传分化明显,而中国高粱地方品种地区间和类型间分化极弱。主成分分析(PCA)能够明显区分中外高粱种质但不能将中国高粱按地区或类型分开。分子方差分析(AMOVA)表明,中外高粱间的遗传变异占全部参试材料遗传变异的20.43%。中国高粱遗传变异主要存在于地区内材料间(占总变异91.94%)或生态区内材料间(占总变异94.97%)。在品种类型方面,中国高粱绝大部分遗传变异存在于穗型内材料间(占总变异97.93%)。本研究支持中国高粱外来说的观点。

关键词: 中国高粱, 遗传多样性, 微卫星, 演化, 起源

Abstract: The genetic variation of 184 Chinese sorghum landraces (Sorghum bicolor L.) from a broad geographic area and representing different phenotypes, and 69 representative foreign cultivated sorghum accessions (world sorghum), was assessed using 32 nuclear SSR primer pairs. Overall, lower level of genetic diversity was detected in Chinese sorghum than in world sorghum. The allelic richness (Rs) and Nei’s allele diversity (He) for Chinese sorghum and world sorghum were 9.81 and 0.629, and 11.52 and 0.745, respectively. Fewer unique alleles were detected in Chinese sorghum than in world sorghum. Chinese sorghum had a genetic diversity level lower than accessions from East Africa (He=0.732), North America (He=0.707) and South Asia (He=0.712); and was only comparable to those from South African accessions (He=0.609). Marked differences in level of genetic variation were revealed between Chinese sorghum landraces from 12 provinces, with Rs ranging from 3.64 to 4.88 and He from 0.517 to 0.714. Accessions from Jilin Province exhibited the highest level of genetic diversity among all regions in China, which was comparable to the sorghum in East Africa . The results indicated a strong divergence of Chinese sorghum from world sorghum, but a weak differentiation among Chinese sorghum both on regional and type bases. Principal component analysis (PCA) clearly separated Chinese sorghum from world accessions but could not separate Chinese sorghum into discrete geographical or phenotypic groups. Analysis of molecular variance (AMOVA) indicated that 20.43% of the total genetic variation was attributable to the difference between world and Chinese sorghum and 79.57% occurred among Chinese and world sorghum accessions. For Chinese sorghum, partitioning the total variation revealed that genetic diversity mainly existed among accessions within regions (91.94%) or eco-regions (94.97%) rather than among regions (8.06%) or eco-regions (5.03%). Similarly, a large portion (97.93%) of the total variation was found within types compared to among types (2.07%). Our study supports the view that Chinese sorghum is of African origin. Chinese sorghum may have experienced a long history of natural and human selection when largely isolated from outside world since prehistoric time. Suggestions for sorghum breeding programs were presented in the light of these data.

Key words: Sorghum bicolor, Genetic diversity, Microsatellites, Evolution, Origin

[1]Harlan J R, de Wet J M J. A simplified classification of cultivated sorghum. Crop Sci, 1972, 12: 172-176
[2]Grenier C, Deu M, Kresovich S, Bramel-cox P J, Hamon P. Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures. B. Using molecular markers. Theor Appl Genet, 2000, 101: 197-202
[3]Li F(李璠), Li J-Y(李敬仪), Lu Y(卢晔), Bai P(白品), Cheng H-F(程华芳). New discovery of the ancient remains of agriculture in the Neolithic site of Dong-Hui hill at Min-Luo county in Gansu. Agric Archaeol (农业考古), 1989, (1): 56-65 (in Chese with English abstract)
[4]Wang F-D(王富德), Liao J-L(廖嘉玲). Origin and domestication of Chinese sorghum. Liaoning Agric Sci (辽宁农业科学), 1981, (4): 23-26 (in Chinese)
[5]Wei S(卫斯). Origin of cultivated sorghum in China. Agric Hist China (中国农史), 1984, (2): 45-50(in Chinese)
[6]Li F(李璠). A brief discussion on the origin and development of the cultivated plants in China. Agric Archaeol (农业考古), 1993, (1): 49-55(in Chinese)
[7]Wang F-D(王富德), Liao J-L(廖嘉玲). Classification of Chinese cultivated sorghum. Liaoning Agric Sci (辽宁农业科学), 1981, (2): 18-22(in Chinese)
[8]Lu Q, Dahlberg J A. Chinese sorghum genetic resources. Econ Bot, 2001, 55: 401-425
[9]Qiao K-D(乔魁多), Wei Z-S(魏振山). Agro-morphological Descriptions of Chinese Sorghum (中国高粱品种志). Beijing: Agricultural Press, 1980 (in Chinese)
[10]Snowden J D. The cultivated races of Sorghum. London: Allard and Son, 1936
[11]de Wet J M J, Huckabay J P. The origin of Sorghum bicolor: II. Distribution and domestication. Evol Int J Org Evo, 1967, 21: 787-802
[12]Wang F-D(王富德), Lu Q-S(卢庆善). An analysis of the pedigrees of the main hybrid sorghum in China. Acta Agron Sin (作物学报), 1985, 11: 9-14 (in Chinese with English abstract)
[13]Li Y, Li C. Genetic contribution of Chinese landraces to the development of sorghum hybrids. Euphytica, 1998, 102: 47-55
[14]Menkir A, Goldsbrough P, Ejeta G. RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci, 1997, 37: 564-569
[15]Li Y, Li C. Phenotypic diversity of sorghum landraces in China. International Conference on Genetic Improvement of Sorghum and Pearl Millet, 1997. pp 659-668
[16]de Oliveira A C, Richter T, Bennetzen J L. Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome, 1996, 39: 579-587
[17]Deu M, Rattunde F, Chantereau J.A global view of genetic diversity in cultivated sorghum using a core collection. Genome, 2006, 49: 168-280
[18]Aldrich P R, Doebley J. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet, 1992, 85: 293-302
[19]Deu M, Gonzalez-de-Leon D, Glaszmann J C, Degremont I, Chantereau J, Lanaud C, Hamon P. RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet, 1994, 88: 838-844
[20]Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X. Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet, 2000, 99: 157-163
[21]Menz M A, Klein R R, Unruh N C, Rooney W R, Klein P E, Mullet J E. Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci, 2004, 44: 1236-1244
[22]Folkertsma R H, Frederick H, Rattunde W, Chandra S, Raju G S, Hash C T. The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet, 2005, 111: 399-409
[23]Powell W, Machray G C, Provan J. Polymorphism revealed by single sequence repeats. Trends Plant Sci, 1996, 1: 215-222
[24]Brown S M, Hopkins M S, Mitchell S E, Senior M L, Wang T Y, Duncan R R, Gonzalez-candelas F, Kresovich S. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum
[Sorghum bicolor (L.) Moench]. Theor Appl Genet, 1996, 93: 190-198
[25]Kong L, Dong J, Hart G E. Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet, 2000, 101: 438-448
[26]Bhattramakki D, Dong J, Chhabra A K, Hart G E.An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome, 2000, 43: 988-1002
[27]Schloss S J, Mitchell S E, White G M, Kukatla R, Bowers J E, Paterson A H, Kresovich S. Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet, 2002, 105: 912-920
[28]Djè Y, Heuertz M, Lefèbvre C, Vekemans X. Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet, 2000, 100: 918-925
[29]Casa A M, Mitchell S E, Hamblin M T, Sun H, Bowers J E, Paterson A H, Aquadro C F, Krosovich S .Diversity and selection in sorghum: simultaneous analysis using simple sequence repeats. Theor Appl Genet, 2005, 111: 23-30
[30]Ghebru B, Schmidt R J, Bennetzen J L. Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet, 2002, 105: 229-236
[31]Abu Assar A H, Uptmoor R, Abdelmula A A, Salih M, Ordon F, Friedt W. Genetic variation in sorghum germplasm from Sudan, ICRISAT and USA assessed by simple sequence repeats (SSRs). Crop Sci, 2005, 45: 1636-1644
[32]Li R, Zhang H, Zhou X, Guan Y, Yao F, Song G, Wang J, Zhang C. Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Genetic Resources Crop Evolution, 2010, 57: 1-15
[33]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15
[34]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press, 1989
[35]Menz M A, Klein R R, Mullet J E, Obert J A, Unruh N C, Klein P E. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol, 2002, 48: 483-492
[36]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607
[37]Excoffier, Laval L G, Schneider S. Arlequin Ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1: 47-50
[38]Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987
[39]Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/ fstat.html, 2001
[40]Liu K, Muse S V. PowerMarker: Intergrated analysis environment for genetic marker data. Bioinformatics, 2005, 21: 2128-2129
[41]Dice L R. Measures of the amount of ecological associations between species. Ecology, 1945, 26: 297-302
[42]Rohlf FJ. NTSYS-pc version 2.10 t. Applied Biostatistics. SSPS, Chicago, 2001
[43]Nei M, Li M H. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci USA, 1979, 76: 5269-5273
[44]de Wet J M J, Harlan J R. The origin and domestication of Sorghum bicolor. Econ Bot, 1971, 25: 128-131
[45]de Wet J M J. Systematic and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot, 1978, 65: 477-484
[46]Aldrich P R, Doebley J, Scherts K F, Stec A. Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet, 1992, 85: 451-460
[47]Garris A J, Tai T H, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics, 2005, 169: 1631-1638
[48]Ayana A, Bryngelsson T, Bekele E. Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor ssp. Verticiliflorum (L.) Monech) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol, 2000, 47: 471-482
[49]Djè Y, Ater M, Lefèbvre C, Vekemans X. Pattern of morphological and allozyme variation in sorghum landraces of Northwest Morocco. Genet Resour Crop Evol, 1998, 45: 541-548
[50]Doggett H. Sorghum, 2nd edn. London: Longman, 1988
[51]Harlan J R, Stemler A B L. Races of Sorghum in Africa. In: Harlan J R, de Wet J M J, Stemler ABL eds. Origins of African Plant Domestication. The Hague: Mouton Press, 1976
[52]Chen W (陈文明). Agricultural Archaeology in China (农业考古). Beijing: Cultural Relics Publishing House, 2002 (in Chinese)
[53]Mann J A, Kimber C T, Miller F R. The origin and early cultivation of sorghum in Africa. Texas Agricultural & Mechanical Station Bulletin No. 1454, Texas Agricultural & Mechanical University, College Station, Tex., USA. 1983. pp 1-21
[54]Harlan J R. The Living Fields, Our Agricultural Heritage. Cambridge: Cambridge University Press, 1995
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[5] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[6] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[7] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[8] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[9] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[10] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[11] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[12] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[13] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[14] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
[15] 魏中艳, 李慧慧, 李骏, YasirA.Gamar, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证[J]. 作物学报, 2018, 44(03): 315-323.
Full text



No Suggested Reading articles found!