欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 424-432.doi: 10.3724/SP.J.1006.2011.00424

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜烯脂酰-CoA还原酶基因BnECR的克隆及功能分析

倪郁,张飞萃,王亚超,蒲飞,王瑞,柴友荣,李加纳   

  1. 西南大学农学与生物科技学院,重庆 400715
  • 收稿日期:2010-09-08 修回日期:2010-11-26 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 基金资助:

    本研究由国家自然科学基金项目(31000122),重庆市自然科学基金项目(CSTC2008BB1002),国家博士后基金项目(20090460718)和西南大学博士启动基金项目(SWUB2008010)资助。

Cloning and Functional Analysis of Enoyl-CoA Reductase Gene BnECR from Oilseed Rape (Brassica napus L.)

NI Yu,ZHANG Fei-Cui,WANG Ya-Chao,PU Fei,WANG Rui,CHAI You-Rong,LI Jia-Na   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2010-09-08 Revised:2010-11-26 Published:2011-03-12 Published online:2011-01-17

摘要: 反式烯脂酰-CoA还原酶(trans-2, 3-enoyl-CoA reductase, ECR)是催化超长链脂肪酸(VLCFAs)合成的脂肪酰-CoA延长酶之一。根据已报道拟南芥等的ECR基因设计引物,采用RACE (rapid amplification of cDNA ends)方法从甘蓝型油菜中克隆ECR的全长cDNA序列和对应的基因组序列,命名为BnECR (GenBank登录号分别为FJ899705和FJ899706)。序列分析结果显示,BnECR的全长cDNA序列为1 328 bp,对应的基因组序列为2 093 bp,由4个外显子组成,在ORF的上、下游分别有一个163 bp的5′UTR和一个232 bp的3′UTR。根据编码区预测BnECR前体蛋白为一个310个氨基酸残基的多肽链,包含ECR蛋白的重要功能位点K144、R145及一个NAD(P)H结合基序G225SGGYQIPR/HG234。NCBI Blastn、氨基酸序列多重比对及保守域分析表明, 该基因与拟南芥AtECR基因的同源性最高,是对应拟南芥AtECR的垂直同源基因。RT-PCR分析表明,BnECR基因在甘蓝型油菜根、茎、叶、花及角果中均有表达,其中在茎中的表达量最高。BnECR在高芥酸材料种子发育中后期的表达量显著高于低芥酸种子,表明BnECR可能参与甘蓝型油菜芥酸的合成。将BnECR克隆到酿酒酵母的穿梭表达载体中,分别转化野生型酵母By4743和突变体菌株YDL015c,添加半乳糖诱导表达。气相色谱分析表明,BnECR在酿酒酵母中有效表达,转化菌株中的芥酸(C22:1)占总脂肪酸含量的1.34%,比对照增加了52%;对突变体的转化结果表明芥酸含量恢复到野生型水平。

关键词: 甘蓝型油菜, 烯脂酰CoA还原酶, 克隆, 芥酸, 酿酒酵母

Abstract: Very-long-chain fatty acids (VLCFAs) are critical components found in cuticular waxes, sphingolipids and triacylglycerols in higher plants. Biosynthesis of VLCFAs is catalyzed by the fatty acyl-CoA elongase, a membrane-bound enzymatic complex containing 3-ketoacyl-CoA synthase (KCS), 3-ketoacyl-CoA reductase (KCR), 3-hydroxacyl-CoA dehydratase (HCD), and trans-2, 3-enoyl-CoA reductase (ECR). In this research, primers were designed based on multiple alignments of trans-2,3-enoyl-CoA reductase (ECR) gene sequences from Arabidopsis thaliana and other plants, and the full- length cDNA, here designated BnECR, and the corresponding genomic sequenceswere isolated from Brassica napus by using rapid amplification of cDNA ends (RACE) method (GenBank Accession No. FJ899705 and FJ899705). The sequence of BnECR cDNA was 1 328 bp (excluding the poly dA tail), and the corresponding genomic sequence was 2093 bp. BnECR was composed of four exons and contained a 163 bp 5' untranslated region (5' UTR) and a 233 bp 3' UTR. The deduced BnECR protein was 310 amino acid in length, with a MW of 735.78 kD and a pI of 9.52. The critical functional sites K144, R145 in AtECR were unchanged in BnECR. The G225SGGYQIPR/HG234 which presented a non-classical NADPH-binding motif was found in C-terminal of BnECR. NCBI Blastn, multiple alignments and conserved domain search showed that BnECR had the highest homology to A. thaliana AtECR. RT-PCR analysis showed that BnECR was ubiquitously expressed in B. napus and preferentially expressed in the stem. The transcript level of BnECR at middle and late stages of seed development in low erucic acid rapeseed cultivar was obviously lower than that in high erucic acid rapeseed cultivar, suggesting that BnECR was involved in biosynthesis of erucic acid. The 933 bp BnECRORF was subcloned into the yeast-E. coli shuttle vector pYES2.0. And then the recombinant plasmid was transformed into Saccharomyces cerevisiae wild type strain By4743 and mutant strain YDL015c, respectively. With galactose as inducer, the transformant was cultured to induce the expression of BnECR. The GC result indicated that BnECR was overexpressed effectively in S. cerevisiae, and the content of erucic acid reached to 1.34% of the total fatty acid in recombinant strain, an increase of 52% over the control. Functional complementation of BnECR in a ECR-deficient mutant yeast demonstrated that BnECR mediated the biosynthesis of VLCFAs. Our results suggest that BnECR should be functional orthologue of AtECR.

Key words: Brassica napus L, Enoyl-CoA reductase, Cloning, Erucic acid, Saccharomyces cerevisiae

[1]Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42: 51-80
[2]Leonard A E, Pereira S L, Sprecher H, Huang Y S. Elongation of long-chain fatty acids. Prog Lipid Res, 2004, 43: 36-54
[3]Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta, 2003, 1632: 1-15
[4]Fehling E, Mukherjee K D. Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long chain acyl-CoA products and substrate specificity. Biochim Biophys Acta, 1991, 1082: 239-246
[5]von Wettstein-Knowles P M. Elongase and epicuticular wax biosynthesis. Physiol Veg, 1982, 20: 797-809
[6]James D W Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis FATTY ACID ELONGA- TION1 (FAE1) gene with the maize transposon activator. Plant Cell, 1995, 7: 309-319
[7]Beaudoin F, Gable K, Sayanova O, Dunn T, Napier J A. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem, 2002, 277: 11481-11488
[8]Garcia C, Joubes J, Chevalier S, Laroche-Traineau J, Bourdenx B, Dieryck W, Lessire R. AtHCD1 encodes a 3-hydroxyacyl-CoA dehydratase involved in wax biosynthesis in Arabidopsis thaliana. In: Benning C, Ohlrogge J, eds. Proceedings of 17th International Symposium on Plant Lipids. Salt Lake City: Aardvark Global Publishing Company, 2007. pp 203-206
[9]Gable K, Garton S, Napier J A, Dunn T M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot, 2004, 55: 543-545
[10]Dittrich F, Zajonc D, Huhne K. Fatty acid elongation in yeast-biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur J Biochem, 1998, 252: 477-485
[11]Kohlwein S D, Eder S, Oh C S, Martin C E, Gable K, Bacikova D, Dunn T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol, 2001, 21: 109-125
[12]Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-coA reductase gene reveal an essential role for very- long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005, 17: 1467-1481
[13]Parka J A, Kimb T W, Kimb S K, Kima W T, Paic H S. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana. FEBS Lett, 2005, 579: 4459-4464
[14]Song W Q, Qin Y M, Saito M, Shirai T, Pujol F M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif. J Exp Bot, 2009, 60: 1839-1848
[15]Food Standards Australia New Zealand. Erucic acid in food: a toxicological review and risk assessment. Technical Report Series, 2003, 21: 17-23
[16]Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet, 1998, 96: 852-858
[17]Puyaubert J, Dieryck W, Costaglioli P, Chevalier S, Breton A, Lessire R. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development. Biochim Biophys Acta, 2005, 1687: 152-163
[18]Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kaul K, Kumar S. 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem, 2004, 335: 330-333
[19]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning, 3rd edn. New York: Cold Spring Harbor Labortory, 2002
[20]Dohmen R J, Strasser A W, Höner C B, Hollenberg C P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast, 1991, 7: 691-692
[21]Marchler-Bauer A, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Liebert C A, Liu C, Lu F, Lu S, Marchler G H, Mullokandov M, Song J S, Tasneem A, Thanki N, Yamashita R A, Zhang D, Zhang N, Bryant S H. CDD: specific functional annotation with the conserved domain database. Nucl Acids Res, 2009, 37: 205-210
[22]Paul S, Gable K, Dunn T M. A six-membrane-spanning topology for yeast and Arabidopsis Tsc13p, the enoyl reductases of the microsomal fatty acid elongating system. J Biol Chem, 2007, 282: 19237-19246
[23]Hofmann K, Stoffel W. TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler, 1993, 374: 166-167
[24]Harlan W R Jr, Wakil S J. Synthesis of fatty acids in animal tissues: I. Incorporation of C14-acetyl coenzyme A into a variety of long chain fatty acids by subcellular particles. J Biol Chem, 1963, 238: 3216-3223
[25]Qin Y, Ma Pujol F, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductase from developing cotton fibers. Cell Res, 2005, 15: 465-473
[26]Costaglioli P, Joubes J, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta, 2005, 1734: 247-258
[27]Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem, 2001, 39: 253-262
[28]Johnston J S, Pepper A E, Hall A E, Chen Z J, Hodnett G, Drabek J, Lopez R, Price H J. Evolution of genome size in Brassicaceae. Ann Bot, 2005, 95: 229-235
[29]Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol, 2001, 46: 717-725
[30]Lemieux B, Miquel M, Somerville C, Browse J. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet, 1990, 80: 234-240
[31]Kunst L, Tayl D C, Underhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem, 1992, 30: 425-434
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!