欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 842-854.doi: 10.3724/SP.J.1006.2011.00842

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥运筹对大穗型水稻品种金恢809灌浆期叶片蛋白质表达的影响

张志兴1,2,李忠1,2,陈军1,2,李奇松1,2,陈龙怀1,2,陈鸿飞1,2,黄锦文1,林文雄1,2,*   

  1. 1 福建农林大学农业生态研究所, 福建福州350002; 2 福建农林大学生命科学学院, 福建福州350002
  • 收稿日期:2010-10-28 修回日期:2011-03-08 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 通讯作者: 林文雄, E-mail: wenxiong181@163.com, Tel: 0591-83769440
  • 基金资助:

    本研究由国家自然科学基金项目(30871494),教育部高等学校博士学科点专项科研基金项目(200803890006)和福建省自然科学基金项目(2007J0304, 2008J0042)资助。

Effects of Nitrogen Management on Protein Expression of Flag Leaves during Grain-Filling Period in Large Panicle Rice (Oryza sativa L.)

ZHANG Zhi-Xing1,2,LI Zhong1,2,CHEN Jun1,2,LI Qi-Song1,2,CHEN Long-Huai1,2,CHEN Hong-Fei1,2,HUANG Jin-Wen1,LIN Wen-Xiong1,2,*   

  1. 1 Institute of Agricultural Ecology, Fujian Agricultural and Forestry University, Fuzhou 350002, China; 2 School of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou 35002, China
  • Received:2010-10-28 Revised:2011-03-08 Published:2011-05-12 Published online:2011-03-24
  • Contact: 林文雄, E-mail: wenxiong181@163.com, Tel: 0591-83769440

摘要: 籽粒灌浆期叶片的代谢情况对水稻最终产量的形成具有重要的意义。本文运用双向电泳技术探讨了两种不同氮肥施用比例下,籽粒灌浆不同时期叶片蛋白的差异表达情况。共检测到32个出现差异表达的蛋白,其中27个在后期适当增加氮肥施用比例的处理下上调表达,5个下调表达。依据蛋白功能可以将鉴定到的蛋白分为5大类即光合代谢(12个)、抗逆反应(5个)、激素合成及信号转导(5个)、细胞生长和分化(5个)、假想蛋白(5个)。为了进一步明确氮肥调控对灌浆期叶片的影响,本文考察了叶片光合以及保护酶相关指标。结果显示,增加水稻生育后期的氮肥施用比例,延缓了叶片中叶绿素以及可溶性蛋白在籽粒灌浆期的降解,延长了叶片光合作用时间,提高了SOD、POD和CAT在灌浆后期的活性,降低了膜脂过氧化程度。生理指标结果进一步证明了差异蛋白组学结果的可靠性,说明后期增加氮素的供应确能有效地促进叶片灌浆期正常的生理代谢。本研究在蛋白水平和生理指标水平,为进一步揭示氮肥调控措施对水稻灌浆代谢机理的影响提供了理论依据。

关键词: 水稻, 籽粒灌浆, 叶片, 蛋白, 氮肥

Abstract: In rice (Oryza sativa), approximately 60%–100% of the carbon in mature grains originates from CO2 assimilation during the grain-filling period, with the flag leaf as the most important contributor to the yield. It is therefore important to understand molecular mechanisms of flag leaf during the grain-filing period. Two-dimensional electrophoresis (2-DE) technology was applied to investigate the differential expression patterns of leaf proteins from different periods during grain-filling process in rice cultivation Jinhui 809 treated by two different nitrogen application ratios. The results showed 32 differentially expressed proteins with 27 up-regulated and five down-regulated, in response to increased nitrogen application at grain-filling stage. According to their relative functions the identified proteins were classified into five main categories: photosynthesis (12); adversity-resistance response (5); hormone synthesis and signal transduction (5); cell growth and differentiation (5); unknown functions (5). Then photosynthesis-related features together with adversity-defense related indicators (SOD, POD, CAT, MDA, and soluble protein) were determined. The appropriate increase in nitrogen application at late growth stage on one hand delayed the degradation of chlorophyll and soluble protein in leaf during grain filling period, in turn elongated the leaf photosynthesis process; on the other hand promoted the activities of SOD, POD, CAT, while decreased the lipid peroxidation degree, which together indicated the strengthen of leaf adversity-defense ability. The results not only verify the high efficient effect of increased nitrogen application on leaf metabolisms during grain-filling process, but also provide the theoretic basis for studies on rational management of nitrogen fertilizer and its relevant molecular regulation in the future.

Key words: Rice, Grain-filling, Flag leaf, Protein, Nitrogen fertilizer

[1]Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135-1139
[2]Peng S B, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559
[3]Cheng S H, Zhuang J Y, Fan Y F, Jing H D, Li Y C. Progress in research and development on hybrid rice: A super-domesticate in China. Ann Bot, 2007, 100: 959-966
[4]Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrids. Crop Sci, 2002, 42: 766-772
[5]Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Chen Y-M(陈玉梅), Xiong C-M(熊昌明). Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1927-1936 (in Chinese with English abstract)
[6]Ling Q-H(凌启鸿), Yang J-C(杨建昌). Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin (中国农业科学), 1986, 3(1): 1-8 (in Chinese with English abstract)
[7]Xue Y-F(薛艳风), Lu J-F(陆江锋), Lü C-G(吕川根), Jin J(金军), Zou J-S(邹江石), Zhu Q-S(朱庆森). Studies on the development of grain filling of two-line intersubspecific hybrid rice Liangyoupeijiu. Jiangsu Agric Res (江苏农业研究), 2001, 22(2): 13-19 (in Chinese with English abstract)
[8]Yang J-C(杨建昌), Su B-L (苏宝琳), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Characteristics and physiology of grain-filling in intersubspecific hybrid rice. Sci Agric Sin(中国农业科学), 1998, 31(1): 7-14 (in Chinese with English abstract)
[9]Wang Z-Q(王志琴), Yang J-C(杨建昌), Zhu Q-S(朱庆森), Zhang Z-J(张祖建), Lang Y-Z(郎有忠), Wang X-M(王学明). Reasons for poor grain plumpness in intersubspecific hybrid rice. Acta Agron Sin (作物学报), 1998, 24(6): 782-787 (in Chinese with English abstract)
[10]Wang Y-R(王彦荣), Hua Z-T(华泽田), Chen W-F(陈温福), Dai G-J(代贵金), Hao X-B(郝宪彬), Wang Y(王岩), Zhang Z-X(张忠旭), Sui G-M(隋国民). Relation between root and leaf senescence and their effects on grain-filling in japonica rice. Acta Agron Sin (作物学报), 2003, 29(6): 892-898(in Chinese with English abstract)
[11]Wang S-H(王绍华), Ji Z-J(吉志军), Liu S-H(刘胜环), Ding Y-H(丁艳锋), Cao W-X(曹卫星). Relationships between balance of nitrogen supply-demand and nitrogen translocation and senescence of leaves at diferent positions of rice. Sci Agric Sin (中国农业科学), 2003, 36(11): 1261-1265(in Chinese with English abstract)
[12]Yang A-Z(杨安中), Li M-L(李孟良), Mu X-L(牟筱玲), Liu A-R(刘爱荣). Effect of nitrogen application on photosynthesis and senescence of flag leaf and yiled of upland rice and in mulched soil. Acta Pedol Sin (土壤学报), 2006, 43(4): 703-707 (in Chinese with English abstract)
[13]Yang A-Z(杨安中), Mu X-L(牟筱玲), Li M-L(李孟良), Ye M-L(叶梅荣), Yu H-B(余海兵). Effect of nitrogen application on the senescence of flag leaf and yield of rice cultivated in aerobic soil. J Nanjing Agric Univ (南京农业大学学报), 2004, 27 (4): 126-129 (in Chinese with English abstract)
[14]Wang S-H(王绍华), Ji Z-J(吉志军), Liu S-H(刘胜环), Ding Y-F(丁艳锋), Cao W-X(曹卫星). Relationships between balance of nitrogen translocation and senescence of leaves at different positions of rice. Sci Agric Sin (中国农业科学), 2003, 36(11): 1261-1265 (in Chinese with English abstract)
[15]Xu K-Z(徐克章), Hei T-R-X(黑田荣喜), Ping Y-G(平野贡). The dynamic changes of nitrogen content and photosynthesis and their correlations in pot rice leaves after anthesis. Acta Agron Sin (作物学报), 1995, 21(2): 171-175 (in Chinese with English abstract)
[16]Tian Y-C(田永超), Cao W-X(曹卫星), Wang S-H(王绍华), Zhu Y(朱艳). Variation of water and nitrogen con tents & photosynthesis at different position leaves of rice under different soil water and nitrogen conditions. Acta Agron Sin (作物学报), 2004, 30(11): 1129-1134 (in Chinese with English abstract)
[17]Zhong X-H(钟旭华), Huang N-R(黄农荣), Zheng H-B(郑海波), Peng S-B(彭少兵). Specification for the “three Controls” nutrient management technology for irrigated rice. Guangdong Agric Sci (广东农业科学), 2007, (5): 13-15 (in Chinese with English abstract)
[18]Li G-Y(李广宇), Peng X-L(彭显龙), Liu Y-Y(刘元英), Sheng D-H(盛大海), Bao Y(暴勇). Effects of applying N at later growth stage on rice yield and quality in cold area of China. J Northeast Agric Univ (东北农业大学学报), 2009, 40(3): 7-11 (in Chinese with English abstract)
[19]Wang J-Y(王经源), Chen S-Y(陈舒奕), Liang Y-Y(粱义元), Lin W-X(林文雄). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ (福建农林大学学报), 2006, 35(2): 187-190 (in Chinese with English abstract)
[20]Garrels J I. Quantitative two-dimensional gel electrophoresis of proteins. Methods Enzymol, 1983, 100: 411-423
[21]Peng X X, Ye X T, Wang S Y. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine, 2004, 22: 2750-2756
[22]Zhang Z-L(张志良). Experimental Guidance for Plant Physiology (植物生理学实验指导). Beijing: Higher Education Press, 1995. pp 155-157 (in Chinese)
[23]Xiang T-H(向太和), Wang L-L(王利琳), Pang J-L(庞基良). Cloning and characterization of a full-length cab gene encoding the lightharvesting chlorophyll a/b-binding proteins in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(9): 1227-1232 (in Chinese with English abstract)
[24]Carrillo N, Ceccarelli E A. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem, 2003, 270: 1900-1915
[25]Okamura I K, Hosaka H, Yoshimura M, Yamashita E, Toma S, Nakagawa A, Fujiwara K, Motokawa Y, Taniguchi H. Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia. J Mol Biol, 2005, 351: 1146-1159
[26]Akiko K, Go T. Photorespiratory protects C3 plants from photooxidation. Nature, 1996, 384: 557-560
[27]Muraoka H, TangY H, Terashima I, Koizumi H, Washitani I, TangY H. Contribution of diffusional limitation and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ, 2000, 23: 235-250
[28]Andrews J R, Baker N R. Oxygen-sensitive diference in the relationship between photesynthetic electron transport and CO2 assimilation in C3 and C4 plants during state transition. Aust J Plant Physiol, 1997, 24: 495-503
[29]Lin W X(林文雄), Chen Y-P(陈逸鹏). A preliminary study of cell defense enzymes at the late growing stage of hybrid rice exposed to different nitrogen supplies. Chin J Ecol (生态学杂志), 1997, 16(1): 14-16 (in Chinese with English abstract)
[30]Kim S G, Kim S T, Wang Y, Kim S, Lee C H, Kim K, Kim J, Lee S Y, Kang K Y. Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiol Plant, 2010, 138: 1-9
[31]Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem, 2003, 278: 38921-38925
[32]Gong Y(龚琰), Xu M-Q(许梦秋). Advance in Cinnamyl alcohol dehydrogenase as a key enzyme of lignin biosynthesis. Biotechnol Bull (生物技术通报), 2010, (4): 47-49 (in Chinese with English abstract)
[33]Dhugga K S,Tiwari S C, Ray P M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Nat Acad Sci USA, 1997, 94: 76-79
[34]Bao Y-M(鲍永美), Wang Z-F(王州飞), Zhang H-S(张红生). Structure and function of SNAREs in plant. Chin Bull Bot(植物学通报), 2005, 22(6): 715-722 (in Chinese with English abstract)
[35]Yan L-F(闫龙凤), Yang Q-C(杨青川), Han J-G(韩建国), Liu Z-P(刘志鹏). Summary of cysteine protease in plants. Acta Pratacult Sin (草业学报), 2005, 14(5): 11-19 (in Chinese with English abstract)
[36]Veach Y K, Martin R C, Mok D W S, Malbeck J, Vankova R, Mok M C. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol, 2003, 131: 1374-1380
[37]Yang X-H(杨晓红), Chen X-Y(陈晓阳), Liu K-F(刘克锋). The role of cytokinins in retarding of senescence in plants. J Trop & Subtrop Bot (热带亚热带植物学报), 2006, 14(3): 256-262 (in Chinese with English abstract)
[38]Liu J-Y(刘进元), Wu X-P(吴雪萍). Research progress on plant phosphoproteomics. J Agric Sci Technol (中国农业科技导报), 2007, 9(4): 43-48 (in Chinese with English abstract)
[39]Zeng F-H(曾富华), Luo Z-M(罗泽民). The effects of gibbereliic acid (GA3) on the factors scavenging active oxygens in the flag leaves of hybrid rice during the later growth stages. Acta Agron Sin (作物学报), 1994, 20(3): 347-350 (in Chinese with English abstract)
[40]Chen X-H(陈新红), Liu K(刘凯), Xi L-L(奚岭林), Wang Z-Q(王志琴), Yang J-C(杨建昌). Effects of soil moisture and nitrogen on abscisic acid and cytokinin contents in the aboveground plant parts of rice. Acta Agron Sin (作物学报), 2005, 31(11): 1406-1414 (in Chinese with English abstract)
[41]Feng Y-F(冯燕飞), Liang Y-R(梁月荣). Cloning and sequencing of S-adenosylmethionine synthetase gene in tea plant. J Tea Sci (茶叶科学), 2001, 2(1): 21-25 (in Chinese with English abstract)
[42]Izhaki A, Shoseyov O, Weiss D. Apetunia cDNA encoding S-adenosylmethionine synthase. Plant Physiol, 1995, 108: 841-842
[43]Boerjan W, Bauw G, Montagu M V, Inzé D. Distinct phenotypes generated by over expression and suppression of S-adenosyl-L-methionine reveal developmental patterns of gene silencing in tobacco. Plant Cell, 1994, 6: 1401-1414
[44]Li Z-G(李志刚), Ye Z-Q(叶正钱), Yang X-E(杨肖娥), Virmani V V. Effect of nutrient management on leaf physiology and grain filling at late growth stage in hybrid rice. J Zhejiang Univ (Agric & Life Sci)(浙江大学学报•农业与生命科学版), 2003, 29(3): 265-270 (in Chinese with English abstract)
[45]Xiao K(肖凯), Zhang R-X(张荣铣), Qian W-P(钱维朴). The physiological Mechanism of senescence and photosynthetic function decline of flag leaf in wheat regulated by nitrogen nutrition. Plant Nutr Fert Sci (植物营养与肥料学报), 1998, 4(4): 371-378 (in Chinese with English abstract)
[46]Zhao Q-Z(赵全志), Ding Y-F(丁艳锋), Wang Q-S(王强盛), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Relationship between leaf color and nitrogen uptake of rice. Sci Agric Sin (中国农业科学), 2006, 39(5): 916-921 (in Chinese with English abstract)
[47]Zhang W-W(张巍巍), Zheng F-X(郑飞翔), Wang X-K(王效科), Feng Z-Z(冯兆忠), Ou-Yang Z-Y(欧阳志云), Feng Z-W(冯宗炜). Effects of elevated ozone on rice (Oryza sativa L.) leaf lipid peroxidation and antioxidant system. Chin J Appl Ecol (应用生态学报), 2008, 19(11): 2485-2489 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[15] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!