欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1144-1150.doi: 10.3724/SP.J.1006.2011.01144

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗纹枯病、赤霉病的转TaPIEP1基因小麦的分子鉴定与选育

刘欣1,蔡士宾2,张伯桥3,周淼平2,路妍1,吴继中2,杜丽璞1,李斯深4,臧淑江,张增艳1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物遗传育种重点开放实验室,北京 100081;2江苏省农业科学院,江苏南京 210014;3江苏里下河地区农业科学研究所,江苏扬州 22507;4山东农业大学农学院,山东泰安 271018
  • 收稿日期:2011-01-21 修回日期:2011-03-21 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781
  • 基金资助:

    本研究由国家转基因生物新品种培育重大科技专项(2008ZX08002-001, 2009ZX08002-006B)资助。

Molecular Detection and Identification of TaPIEP1 Transgenic Wheat with Enhanced-resistance to Sharp Eyespot and Fusarium Head Blight

LIU Xin1,CAI Shi-Bin2,ZHANG Bo-Qiao3,ZHOU Biao-Ping2,LU Yan1,WU Ji-Zhong2,DU Li-Pu1,LI Si-Shen4,ZHANG Zeng-Yan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetic and Breeding of Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3 Jiangsu Lixiahe Agricultural Institute, Yangzhou 22507, China; 4Agronomy College, Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-01-21 Revised:2011-03-21 Published:2011-07-12 Published online:2011-05-11
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781

摘要: 小麦纹枯病(主要病原为禾谷丝核菌)和赤霉病(主要病原为禾谷镰刀菌)已成为我国小麦生产的重要病害。TaPIEP1是从小麦中分离到的1个病原诱导的基因,其编码蛋白是可与GCC-box顺式元件结合、转录激活型的ERF转录因子。本研究以8个转TaPIEP1基因小麦株系的T4和T5代植株为试材,进行了外源转TaPIEP1基因的PCR检测、Southern杂交、RT-PCR与Q-RT-PCR的分析以及纹枯病菌、赤霉病菌接种与抗性鉴定。结果表明,外源TaPIEP1基因在转基因小麦中能够稳定遗传,以单拷贝或双拷贝整合到7个转基因小麦株系基因组的不同位点;外源TaPIEP1基因在转基因小麦中能超量表达;与受体扬麦12相比,TaPIEP1表达水平高的8个转基因小麦株系对纹枯病抗性显著提高,4个株系中一些材料对赤霉病抗性显著提高,3个株系中一些材料兼抗纹枯病和赤霉病,说明TaPIEP1正向参与了小麦对纹枯病和赤霉病抗性反应,利用该基因通过基因工程可创制抗纹枯病、赤霉病的小麦新种质。

关键词: 小麦, ERF转录因子, 转基因, 纹枯病, 赤霉病, 抗性

Abstract: Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, and Fusarium head blight (FHB), primarily caused by Fusarium graminearum, are important diseases of wheat (Triticum aestivum L.) in China. We have isolated a pathogen-induced ERF gene from wheat, TaPIEP1, which encodes the ERF transcription factor TaPIEP1. TaPIEP1 localizes to the nucleus, binds to the GCC-box cis-element and possesses the transcriptional-activation activity. To study the roles of TaPIEP1 in wheat defense responses to the major pathogens of sharp eyespot and FHB, we characterized the TaPIEP1 transgenic wheat plants in T4 and T5 generations by PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistance in these TaPIEP1 transgenic plants through inoculating R. cerealis and F. graminearum. The PCR and Southern blotting results showed that the alien TaPIEP1 was inherited stably in transgenic wheat plants, and was independently integrated with a single copy or two copies into seven transgenic wheat lines, suggesting that these transgenic wheat lines derived from seven transformants. The RT-PCR and Q-RT-PCR analysis results indicated that the alien gene TaPIEP1 was over-expressed in eight transgenic wheat lines. Compared with untransformed wheat host Yangmai 12, the eight transgenic wheat lines over-expressing TaPIEP1 showed significantly-enhanced resistance to R. cerealis infection. Out of them, some plants of three transgenic wheat lines displayed improved-resistance to both R. cerealis and F. graminearum infections. These results suggest that TaPIEP1 gene is involved in defense responses to attack with R. cerealis and F. graminearum, and TaPIEP1 is useful for improving wheat resistance to both diseases.

Key words: Wheat, ERF transcription factor, Transgene, Sharp Eyespot, Fusarium head blight, Resistance

[1]Lu Y(路妍), Zhang Z-Y(张增艳), Ren L-J(任丽娟), Liu B-Y(刘宝业), Liao Y(廖勇), Xu H-J(徐惠君), Du L-P(杜丽璞), Ma H-X(马鸿翔), Ren Z-L(任正隆), Jing J-X(井金学), Xin Z-Y(辛志勇). Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin (作物学报), 2009, 35(4): 640–646 (in Chinese with English abstract)
[2]Bai G H, Shaner G. Scab of wheat: prospects for control. Plant Dis, 1994, 78: 760–766
[3]Bai G H, Shaner G. Mangement and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol, 42: 135–161
[4]Cai S-B(蔡士宾), Ren L-J(任丽娟), Yan W(颜伟), Wu J-Z(吴纪中), Chen H-G(陈怀谷), Wu X-Y(吴小有), Zhang X-Y(张仙义). Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin (中国农业科学), 2006, 39(5): 928–934 (in Chinese with English abstract)
[5]Nakano T, Suzuki K, Fujimura T, Shinshi N. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432
[6]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29: 23–32
[7]Onate-Sanchez L, Anderson J P, Young J, Singh K B. ATERF14, a member of the ERF family of transcription factors plays a nonredundant role in plant defense. Plant Physiol, 2007, 143: 400–409
[8]Pre M, Atallah M, Champion A, De Vos M, Pieterse C M, Johan M. The AP2/ERF domain transcription factor ORA59 Integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, 2008, 147: 1347–1357
[9]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics, 2010, 10: 215–226
[10]Sharp P J, Kries M, Shewry P R, Gale M D. Location of amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290
[11]Zhou M P, Hayden M J, Zhang Z Y, Lu W Z, Ma H X. Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat. J Appl Genet, 2010, 51: 19–25
[12]Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. Plant Mol Biol, 2004, 55: 825–834
[13]Yi S Y, Kim J H, Joung Y H, Lee S Y, Kim W T, Yu S H, Choi D, The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol, 2004, 136: 2862–2874
[14]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factor. Curr Opin Plant Biol, 2004, 7: 465–471
[15]Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to soil-borne fungus Fusarium oxysporum. Mol Plant-Microbe Interact, 2004, 17: 763–770
[16]Solano R, Stepanova A, Chao Q, Ecker J R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ethylene-insensitive 3 and ethylene-responser-factor 1. Genes Dev, 1998, 12: 3703–3714
[17]Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. ETHYLENE-RESPONSE-FACTOR 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15: 165–178
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[5] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!