欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1423-1431.doi: 10.3724/SP.J.1006.2011.01423

• 耕作栽培·生理生化 • 上一篇    下一篇

种植方式和磷素水平互作对陆稻和水稻产量及磷素利用的影响**

张亚洁,华晶晶,李亚超,陈莹莹,杨建昌*   

  1. 扬州大学 / 江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州225009
  • 收稿日期:2010-11-22 修回日期:2011-04-27 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家自然科学基金国际重大合作项目(31061140457), 2008年中央级科研院所基本科研业务费专项基金项目(农业)(200803030), 大学生科技创新基金项目(2010)资助。

Effects of Interaction between Phosphorus Nutrition and Cultivation Methods on Grain Yield and Phosphorus Utilization of Upland Rice and Paddy Rice

ZHANG Ya-Jie,HUA Jing-Jing,LI Ya-Chao,CHEN Ying-Ying,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2010-11-22 Revised:2011-04-27 Published:2011-08-12 Published online:2011-06-13
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

摘要: 以粳型陆稻中旱3号和粳型水稻扬辐粳8号为材料,设置裸地旱种和水种2种种植方式及3种磷素(P2O5)水平:低磷(LP),45 kg hm-2;常磷(NP),90 kg hm-2;高磷(HP),135 kg hm-2。结果表明,在旱种条件下,增加施磷量,陆稻和水稻HP和NP的产量和磷素累积量均较LP显著增加,陆稻HP和NP的磷素物质生产效率和磷素籽粒生产效率较LP显著下降,而水稻的差异不显著; 在水种条件下,陆稻的产量、磷素累积量和磷素籽粒生产效率HP较NP差异不显著,但较LP显著增加,磷素物质生产效率HP较NP显著下降,水稻产量、磷素累积量HP较NP有下降趋势,磷素物质生产效率和磷素籽粒生产效率HP和NP之间差异不显著。旱种使稻株不定根数减少,磷素累积量降低,磷素物质生产效率增加,磷素籽粒生产效率下降,产量下降,但水稻产量下降幅度比陆稻更大。与水稻相比,陆稻不定根数少,磷素累积量少,成穗数少,结实率和千粒重高,产量较低,磷素物质生产效率和磷素籽粒生产效率增加。种植方式×磷素水平的互作对水稻和陆稻花后磷素累积量、磷素籽粒生产效率和不定根数、磷素物质生产效率有显著和极显著影响。花后磷素累积量与产量和不定根数呈极显著正相关,与磷素利用率呈极显著负相关。在旱种条件下,增加施磷量可以增加陆稻和水稻的产量,但无论旱种还是水种,水稻和陆稻产量对磷素响应有差异。

关键词: 陆稻, 水稻, 旱种, 磷素利用, 产量

Abstract: The objective of this study was to investigate the grain yield and the phosphorus utilization efficiency in responses to phosphorous (P) fertilizer and the interaction between cultivation methods and P levels in upland rice and paddy rice. One japonica upland rice cultivar Zhonghan 3 and one japonica paddy rice cultivar Yangfujing 8 were grown under the moist cultivation (MC, contro1) or bare dry-cultivation(DC) with low amount of P (LP, 45 kg ha-1), norma1 amount of P (NP, 90 kg ha-1), and high amount of P (HP, 135 kg ha-1). Under DC, with the increase of P level, both upland rice and paddy rice significantly increased grain yield and P accumulation, andupland rice showeda significant decrease and paddy rice had no difference in P use efficiency of matter production and P use efficiency of grain yield production. Under MC, there was no significant difference in grain yield, P accumulation amount, and P use efficiency of grain yield production. There was a significant decrease in P use efficiency of matter production between HP and NP for the upland rice, but the grain yield and P accumulation at HP were lower than at NP, there was no significant difference in P use efficiency of matter production and P use efficiency of grain yield production between HP and NP for paddy rice. When compared with MC, DC showed less number of adventitious roots, lower P accumulation amount, higher P use efficiency of matter production, lower P use efficiency of grain yield production, and lower grain yield for both upland and paddy rice with more reduction in grain yield for upland rice than for paddy rice. Compared with paddy rice, upland rice showed less number of adventitious roots, lower P accumulation amount, fewer panicles, higher seed setting rate and higher 1000-grain weight, lower grain yield,higher P use efficiency of matter production and higher P use efficiency of grain yield production. Upland rice showed a faster declining inchlorophyll content (SPAD value) of the flag leaf after anthesis. The cultivation methods and phosphorus nutritionhad significant or very significant effects on the P accumulation amount after anthesis, P use efficiency of grain yield production, and adventitious roots for both upland rice and paddy rice. The P accumulation amount after anthesis was very significantly and positively correlated with grain yield and adventitious roots, and very significantly and negatively correlated with P use efficiency. Increase in P levels could increase grain yield for both upland and paddy rice under DC, and the response of the two types of rice cultivars to P levels is different under either DC or MC.

Key words: Upland rice, Paddy rice, Dry cultivation, Phosphorus utilization, Grain yield

[1]Benbi D K. Efficiency of nitrogen use by dry-land wheat in a sub-humid region in relation to optimizing the amount of available water. J Agric Sci, 1989, 115: 7-10
[2]Jin K(金轲), Wang D-S(汪德水), Cai D-X(蔡典雄), Zhou Y(周涌), Guo S-C(郭世昌), Huang F(黄峰), Wang C-L(王翠玲). Differences of root morphology and physiological characteristics between two rape genotypes with different P-efficiency. Plant Nutr Fert Sci (植物营养与肥料学报), 1999, 5(1): 1-7 (in Chinese with English abstract)
[3]Bekele T, Cino B J, Ehlert P A I, Van der Maas A A, Van Diest A. An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant Soil, 1983, 75: 361-378
[4]Fageria N K, Barbosa Filho M P, Carvalho J R P. Response of upland rice to phosphorus fertilization on an oxisol of central Brazil. Am Soc Agron, 1982, 74: 51-56
[5]Li Y-L(李亚龙), Cui Y-L(崔远来), Lü G-A(吕国安), Liang Z-C(梁志宸), Li Y-H(李远华), Feng Y- H(冯跃华). Phosphorus efficiency and water productivity of aerobic rice under different water regimes. Water-Saving Irrigation (节水灌溉), 2005, (6): 1-7 (in Chinese with English abstract)
[6]Delaney K J, WeaverD K, Peterson R K. Photosynthesis and yield reductions from wheat stem Sawfly (Hymenoptera: Cephidae): Interactions with wheat solidness, water stress, and phosphorus deficiency. J Econ Entomol, 2010, 103(2). 516-524
[7]Li S-X(李生秀), Li S-Q(李世清). The effects of different treatments with water and fertilizer on available N and P in dryland soil. Agric Res Arid Areas (干旱地区农业研究), 1995, 13(1): 6-13(in Chinese with English abstract)
[8]He Y-Q(何圆球), Li C-L(李成亮), Wang X-X(王兴祥) , Xiong Y-S(熊又升), Shen Q-R(沈其荣). Effect of soil moisture content and phosphorus application on phosphorus uptake by rice cultivated in aerobic soil. Acta Pedol Sin (土壤学报), 2005, 42(4): 628-634(in Chinese with English abstract)
[9]Gu Q-R(谷秋荣), Yang Z-P(杨占平), Wang Q-J(王秋杰), Li R-P(李瑞萍), Gong R-X(龚瑞霞). Effect of irrigation on nutrient movement of N, P and K in soil. Agric Res Arid Areas (干旱地区农业研究), 2002, 20(4): 30-33(in Chinese with English abstract)
[10]Yin J-L(尹金来), Zhou C-L(周春霖), Shen Q-R(沈其荣), Hong L-Z(洪立洲), Wang K(王凯), Wang M-W(王茂文), Ding J-H(丁金海). Availabilities of phosphorus in soil and rice plant under waterlogged and aerobic conditions. J Nanjing Agric Univ (南京农业大学学报), 2002, 25(4): 53-56(in Chinese with English abstract)
[11]Liu M(刘铭), Wu L-H(吴良欢). Study on changes of soil fertility in rain fed paddy soils with mulching plastic film. Acta Agric Zhejiangensis (浙江农业学报), 2003, 15(1): 8-12(in Chinese with English abstract)
[12]He Y-Q(何圆球), Shen Q-R(沈其荣), Kong H-M(孔宏敏), Wang X-X(王兴祥), Xiong Y-S(熊又升). Effect of soil moisture and phosphorus contents of red soil under rice cultivation in aerobic soil condition. J Soil Water Conserv (水土保持学报), 2003, 17(2): 5-8 (in Chinese with English abstract)
[13]Zhao Q-Z(赵全志), Gao T-M(高桐梅), Yin C-Y(殷春渊), Ning H-F(宁慧峰), Lü Q(吕强). Effects of moisture on content of major nutrients in soil and upland rice plants. Agric Res Arid Areas (干旱地区农业研究), 2006, 24(2): 61-65 (in Chinese with English abstract)
[14]de Varennes A, de Melo-Abreu J P, Ferreira M E. Predicting the concentration and uptake of nitrogen, phosphorus and potassium by field-grown green beans under non-limiting conditions. Eur J Agron, 2002, 17: 63-72
[15]Jugsujinda A, Krairapanond A, Patrick Jr W H. Inflence of extractable iron, aluminum and management on P-sorption flooded acid sulfate soils. Biol Fertil Soils, 1995, 20:118-124
[16]Lou Y-S(娄运生), Li Z-P(李忠佩), Zhang T-L(张桃林). Change in available P content in paddy soils as affected by phosphate fertilization and soil moisture regime. Soils (土壤), 2005, 37(6): 640-644 (in Chinese with English abstract)
[17]Zhang S-H(张书华), Yu C-S(余常水), Tang X-Q(唐相群), Wang H-X(王怀昕). Effects of applying amount of phosphoric fertilizer on rice quality and yield of non-pollution rice. Guizhou Agric Sci (贵州农业科学), 2005, 33(5): 43-44 (in Chinese with English abstract)
[18]Sun H-M(孙慧敏), Yu Z-W(于振文), Yan H(颜红), Shi G-P(史桂萍). Effect of phosphorus rate applied on quality, yield and nitrogen utilization in winter wheat. J Triticeae Crops (麦类作物学报), 2006, 26(2): 135-138 (in Chinese with English abstract)
[19]Wang L Z, Chen F J, Zhang F S, Mi G H. Two strategies for achieving higher yield under phosphorus deficiency in winter wheat grown in field conditions. Field Crops Res, 2010, 118: 36-42
[20]Zhang Y-J(张亚洁), Yang J-C(杨建昌), Du B(杜斌). Effects of cultivation methods on the absorption and use efficiency of phosphorus in upland rice and paddy rice. Acta Agron Sin (作物学报), 2008, 34(1): 126-132 (in Chinese with English abstract)
[21]Weng X Y, Xu H X, Yang Y, Peng H H. Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant, 2008, 52: 307-313
[22]Lu R-K(鲁如坤). Methods of Agricultural Chemical Analysis in Soil (土壤农业化学分析方法). Beijing: China Agricultural Science and Technology Press, 1999. pp 181-182 (in Chinese)
[23]Baker D E, Jarrel A E, Marshall L E, Thomas W I. Phosphorus uptake from soils by corn hybrids selected for high and low phosphorus accumulation. Am Soc Agron, 1970, 62: 103-106
[24]Silva A E D, Gabelman W H. Screening maize inbred lines for tolerance to low-P stress condition. Plant Soil, 1992, 146: 181-187
[25]Liu J-Z(刘建中), Li Z-S(李振声). Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Eco-agric Res (生态农业研究), 1994, 2(1):16-23.(in Chinese with English abstract)
[26]Feest Z, Delgado A, Miren M A. The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.). Plant Soil, 2010, 334: 113-121
[27]Zhang Y-J(张亚洁), Chen H-J(陈海继), Diao G-H(刁广华), Lin Q-S(林强森), Yang J-C(杨建昌). Effects of cultivation methods on the growth characteristics and yield formation in upland and paddy rice. Jiangsu J Agric Sci (江苏农业研究), 2006, 22(3): 205-211 (in Chinese with English abstract)
[28]Tunney H, Kirwan L, Fu W, Culleton N, Black A D. Long-term phosphorus grassland experiment for beef production—impacts on soil phosphorus levels and live weight gains. Soil Use Manag, 2010, 26: 237-244
[29]Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 154-178 (in Chinese)
[30]Wang S-L(王树亮), Tian Q-Z(田奇卓), Li N-N(李娜娜), Xie L-J(谢连杰), Pei Y-T(裴艳婷), Li H(李慧). Differences of phosphorus utilization efficiency among different wheat varieties. J Triticeae Crops (麦类作物学报), 2008, 28(3): 476-486 (in Chinese with English abstract)
[31]Ramaekers L, Remans R, Rao I M, Blairc M W, Vanderleyden J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res, 2010, 117: 169-176
[32]Messiga A J, Ziadi N, Plenet D, Parent L E, Morel C. Long-term changes in soil phosphorus status related to P budgets under maize monoculture and mineral P fertilization. Soil Use Manag, 2010, 26: 354-364
[33]Bremner J M. Nitrogen availability indices. In: Black C A, ed. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Madison, Wisconsin: American Soc Agron, 1983. pp 1324-1345
[34]Rhoads F M, Mansell R S, Hammond L C. Influence of water and fertilizer management on yield and water input efficiency of corn. Am Soc Agron, 1978, 70: 305-308
[35]Delaney K J, Weaver D K, Peterson R K. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency. J Econ Entomol, 2010, 103: 516-524
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!