作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1415-1422.doi: 10.3724/SP.J.1006.2011.01415
冯汉宇,王志敏,孔凡娜,张敏洁,周顺利*
FENG Han-Yu,WANG Zhi-Min,KONG Fan-Na,ZHANG Min-Jie,ZHOU Shun-Li*
摘要: 以郑单958和超试1号为材料,通过控制玉米果穗底部花丝不授粉使顶部籽粒正常结实,比较研究了玉米籽粒早期碳、氮含量动态变化及其与败育的关系。结果表明,控制底部花丝不授粉,提高了顶部穗轴的可溶性糖浓度,增加了对顶部籽粒的物质供应,顶部籽粒的可溶性糖、蔗糖含量提高,淀粉快速积累,顶部籽粒的氮含量增加,籽粒C/N比值提高,籽粒重量快速增加,发育转为正常,表现出与中部籽粒一致的碳、氮变化动态特征以及籽粒生长动态;相反,统一完全授粉处理顶部穗轴的可溶性糖浓度低,顶部籽粒的物质供应少,可溶性糖、蔗糖含量低,淀粉含量提高缓慢,氮含量也较低,籽粒的C/N比值偏低,表现为粒重增加缓慢,最后败育。2个品种表现出一致的规律性。总之,玉米顶部籽粒的正常发育伴随着碳、氮等物质的充足供应,物质供应不足可能是顶部籽粒不能正常发育的根本原因。
[1]Reed A J, Singletary G W. Roles of carborhydrate supply and phytohormones in maize kernel abortion. Plant Physiol, 1989, 91: 986–921 [2]Mozafar A. Kernel abortion and distribution of mineral elements along the maize ear. Agron J, 1990, 82: 511–514 [3]Jonathan M H, Jones R J. Kernel abortion in maize. Plant Physiol, 1986, 81: 503–510 [4]Wang Z-X(王忠孝), Gao X-Z(高学曾), Xu J-F(许金芳), Liu Y-J(刘玉敬), Luo Y-N(罗瑶年). A study on the grain abortion of maize (Zea mays L.). Sci Agric Sin (中国农业科学), 1986, 19(6): 36–40 (in Chinese with English abstract) [5]Zhang F-L(张风路), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Developing characteristic and changes in material of maize kernel abortion. J Maize Sci (玉米科学), 1999, 7(1): 59–61 (in Chinese with English abstract) [6]Boyle M G, Boyer J S, Morgan P W. Stem infusion of maize plants. Crop Sci, 1991, 31: 1241–1245 [7]Boyle M G, Boyer J S, Morgan P W. Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potentials. Crop Sci, 1991, 31: 1246–1252 [8]Zinselmeier C, Lauer M J, Boyer J S. Reversing drought-induced losses in grain yield: sucrose maintains embryo growth in maize. Crop Sci, 1995, 35: 1390–1400 [9]Bewley J D, Black M. Seeds: Physiology of Development and Germination, 2nd edn. New York and London: Plenum Press, 1994 [10]Johnson D R, Tanner J W. Calculation of the rate and duration of grain filling in corn (Zea mays L.). Crop Sci, 1972, 12: 485–486 [11]Clore A M, Dannenhoffer J M, Larkins B A. EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell, 1996, 8: 2003–2014 [12]Schel J H N, Kieft N H, Van Lammeren A A M. Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays L.). Can J Bot, 1984, 62: 2842−2853 [13]Jones R J, Schreiber B M N, Roessler J A. Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci, 1996, 36: 301–306 [14]Reddy V M, Daynard T B. Endosperm characteristics associated with rate of grain filling and kernel size in corn. Maydica, 1983, 28: 339–355 [15]Douglas C D, Leslie J S, Edwin R D. Gene expression during maize kernel development. Seed Sci Res, 1994, 4: 299–305 [16]NeSmith D S, Ritchie J T. Effects of soil water-deficits during tassel emergence on development and yield components of maize (Zea mays L.). Field Crops Res, 1992, 28: 251–256 [17]Reed A J, Singletory G W, Schussler J R, Williamson D R, Christy A L. Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Sci, 1988, 28: 819–825 [18]Setter T L, Flannigan B A. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop Sci, 1986, 26: 575–579 [19]Hu Y-H(胡寅华). The effect of defolliar on ear character and yield of summer maize. J Maize Sci (玉米科学), 1996, 4(1): 46–50 (in Chinese with English abstract) [20]Egharevba P N, Horrocks R D, Zuber M S. Dry matter accumulation in maize in response to defoliation. Agron J, 1976, 68: 40–44 [21]Hashemi A M, Herbert S J, Putnam D H. Yield response of corn to crowding stress. Agron J, 2005, 97: 839–846 [22]Sun G-W(孙国伟), Zhang F-L(张凤路), Guo J(郭江), Zhao J-R(赵久然), Guo J-L(郭景伦). Discuss on the cause of maize kernel abotion. J Maize Sci (玉米科学), 2004, 12(S2): 35–37 (in Chinese with English abstract) [23]Ho L C. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann Rev Plant Physiol Plant Mol Biol, 1988, 39: 355–378 [24]Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis. Physiol Plant, 1996, 98: 245–252 [25]Jonathan M H, Reed A J, Jones R J, McLaren J S. Effect of 1-aminocyclopropane-l-carboxylic acid on maize kernel development in vitro. J Plant Growth Regul, 1990, 9: 89–94 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|