欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1406-1414.doi: 10.3724/SP.J.1006.2011.01406

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甜菜亚硝酸还原酶基因(NiR)的克隆与表达分析

石晓艳,曾彦达,李世龙,王玉波,马凤鸣*,刁志伟   

  1. 东北农业大学农学院,黑龙江哈尔滨 150030
  • 收稿日期:2010-12-06 修回日期:2011-03-26 出版日期:2011-08-12 网络出版日期:2011-05-11
  • 通讯作者: 马凤鸣, E-mail: Fengming_ma@sohu.com, Tel: 0451-5519194
  • 基金资助:

    本研究由国家自然科学基金项目(31071361)?资助。

Molecular Cloning and Characterization of Nitrite Reductase Gene from Sugarbeet

SHI Xiao-Yan,ZENG Yan-Da,LI Shi-Long,Wang Yu-Bo,MA Feng-Ming*,DIAO Zhi-Wei   

  1. College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Received:2010-12-06 Revised:2011-03-26 Published:2011-08-12 Published online:2011-05-11
  • Contact: 马凤鸣, E-mail: Fengming_ma@sohu.com, Tel: 0451-5519194

摘要: 以甜菜品种甜研7号叶片的cDNA为模板,采用RT-PCR和3′/5′RACE技术,获得了编码亚硝酸还原酶基因(NiR)的cDNA全序列2 014 bp, 包含有1 830 bp的开放阅读框,编码599个氨基酸。所推导的氨基酸序列与菠菜及拟南芥NiR编码的氨基酸序列均具93%的同源性。生物信息学分析表明,甜菜NiR具有完整的NiR蛋白结构,含血红素蛋白β-化合物区域和4Fe-4S区域, 并利用分析软件预测其三维结构。实时荧光定量结果显示,在以0、10、20、30、40、50、80和160 mmol L–1 NO3-N处理72 h的试验中,50 mmol L–1处理可使甜菜NiR的表达量达到最大;以0、2、4、8、16、32、64和128 mmol L–1 NH4+-N处理48 h的试验表明,8 mmol L–1和64 mmol L–1处理条件下甜菜NiR表达量相对较高。硝态氮和铵态氮不同配比处理48 h的试验中,NO3-N和NH4+-N比例为80:20可使甜菜NiR的表达量达到最大;在氮素诱导的基础上,蛋白抑制剂放线菌酮处理9 h,随着处理浓度的增大,NiR的表达量逐渐下降;不同浓度NO2处理的试验中,40 mmol L–1处理下NiR的表达量最大。

关键词: 甜菜, 亚硝酸还原酶, cDNA, 克隆, 基因表达

Abstract: The NiR gene was cloned using RT-PCR and 3′/5′RACE techniques. The cDNA of NiR gene isolated from sugarbeet was 2 014 bp containing a 1 830 bp opening-reading frame (ORF), encoding 599 amino acids. Further comparison showed that NiR gene had high homology to both of Spinacia oleracea NiR gene and Arabidopsis thaliana NiR gene, which was 93%. The predicted NiR protein found to have a hemoprotein beta-component (ferrodoxin-like), and 4Fe-4S region, its 3D structure was predicted by analysis software. Real time PCR analysis showed that when using 0, 10, 20, 30, 40, 50, 80, and 160 mmol L–1 NO3-N treated for 72 hours, the expression of NiR gene was the highest at 50 mmol L–1; when using 0, 2, 4, 8, 16, 32, 64, and 128 mmol L–1 NH4+-N treated for 48 hours, the expression of NiR gene showed two peaks at 8 mmol L–1 and 64 mmol L–1, respectively. Furthermore, in experiments treated with different ratios of NO3-N to NH4+-N for 48h, the expression of NiR gene was the highest when the ratio was 80:20. Cycloheximide 9h treatment experiments showed that NiR gene expression decreased with increasing the treating concentration. NO2treatments indicated that the maximum expression of NiR gene was induced by 40 mmol L–1 NO2.

Key words: Sugarbeet, Nitrite Reductase, cDNA, Cloning, Gene expression

[1]Yu X D, Sukumaran S, Márton L. Differential expression of the arabidopsis Nia1 and Nia2 Genes. Plant Physiol, 1998: 1091–1096
[2]Seith B, Schuster C, Mohr H. Coaction of light, nitrate and a plastidic factor in controlling nitrite-reductase gene expression in spinach. Planta, 1991, 184: 74–80
[3]Wang Y-Q(王玉琴). Effeets of internaland external physiological conditions on nitrite reduetase activity in etiolated leaves of wheat seedlings. Plant Physiol Commun (植物生理学通讯), 1988, (4): 18–20 (in Chinese)
[4]Silveira C M, Besson S, Moura I, Moura J J G, Almeida M G, Measuring the cytochrome c nitrite reductase activity—practical considerations on the enzyme assays. Bioinorganic Chem Appl, 2010, ID 634597
[5]Kato C, Takahashi M, Sakamoto A, Morikawa H. Differential expreesion of the nitrite reductase genefamily in tobacco as revealed by quantitative competitive RT-PCR. J Exp Bot, 2004, 55, 1761–1763
[6]Wang R C, Xing X J, Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in arabidopsis roots. Plant Physiol, 2007, 145: 1735–1745
[7]Chen W-P(陈卫平), Zhu X-C(诸秀次). Effects of NO2– and Fe++ on nitrite and nitrate reductase activity in rice seedling. J Southwest Agric Univ (西南农业大学学报), 1991, 13(2): 207–209 (in Chinese with English abstract)
[8]Gao Z-M(高祖明). NADH, NADPH, MV as the electron donor of nitrite reductase of separation. J Nanjing Agric (南京农业大学学报), 1986, (4): 121–124 (in Chinese with English abstract)
[9]Lahners K, Kramer V, Back E, Privalle L, Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase. Plant Physiol, 1988, 88: 741–746
[10]Chen S-Y(陈胜勇), Hou J(侯静), Li C-F(李彩凤), Ma F-M(马凤鸣), Yin C-J(尹春佳), Huang Z-F(黄兆峰). Influence of inhibitors of nucleic acid synthesis and protein synthesis on glutamine synthetase gene expression induced by nitrogen in sugar beet (Beta vulgaris L.). Acta Agron Sin (作物学报), 2009, 35(3): 445–451 (in Chinese with English abstract)
[11]Schmittgen T D, Zakrajsek B A, Mills A G. Quantitative reverse transcription polymerase chain reaction to study mRNA decay: comparison of endpoint and real time methods. Anal Biochem, 2000, 285: 194–204
[12]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195–201
[13]Zdobnov E M, Apweiler R. InterProScan: an integration platform for the signature-recognition methods in InterPro Bioinformatics. 2001, 17: 847–848
[14]Sun F-F(孙菲菲), Jiang F-L(蒋芳玲), Hou X-L(侯喜林), Li Y(李英), Yang X-D(杨学东). Molecular cloning and characterization of nitrite reductase gene B cNiR from non-heading Chinese cabbage. Acta Hortic Sin (园艺学报), 2009, 36(10): 1511–1518 (in Chinese with English abstract)
[15]Phillips W E J. Naturally occurring nitrate and nitrite in foods in relation to infant methaemoglobinaemia. Food Cosmetics Toxicol, 1971, 9: 219–228
[16]Kelley J R, Duggan J M. Gastric cancer epidemiology and risk factors. J Clinical Epidemiol, 2003, 56: 1–9
[17]Yu H-B(于海彬), Cai B(蔡葆), Sun G-Q(孙国琴), Wang Q(王秋). Studies on nitrate beductase activity in sugar beet. Sugar Crops China (中国甜菜), 1993, (3): 18–23 (in Chinese with English abstract)
[18]Naik M S, Abrol Y P, Nair T R, Ramarao C S. Nitrate assimilation-its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry, 1982, 21: 495–504
[19]He J-X(何军贤), Liang H-G(梁厚果). Preparation of high quality plant RNA with low concentration of guanidinium thiocyanate. Prog Biochem Biophysics (生物化学与生物物理进展), 1998, 25(4): 379–381 (in Chinese with English abstract)
[20]Etheridge N, Trusov Y, Verbelen J R. Characterization of atdrgl, a member of a new class of GTP-binding proteins in plants. Plant Mol Boil, 1999, 39: 1113–1126
[21]Wang Y-C(王玉成), Yang C-P(杨传平), Jiang J(姜静). Method of extracting RNA quickly from Syringa oblata and Acer negundo. J Northeast For Univ (东北林业大学学报), 2001, 29(6): 90–91 (in Chinese with English abstract)
[22]Anisworth C. Isolation RNA from floral tissue of Rumex cacetosca (Sorrel). Plant Mol Biol Rep, 1994, 12: 198–203
[23]Dai J-J(戴建军). Cloning and Characterization of Differential Expression Gene from Bolting Sugar Beet in the First Growth Year. PhD Dissertation of Northeast Agricultural University, 2003. pp 27–28 (in Chinese with English abstract)
[24]Wang S-C(王淑春). Molecular Cloning of Glutamine Synthetase Gene. MS Dissertation of Heilongjiang University. 2007, pp 1–12 (in Chinese with English abstract)
[25]Andrea M, Christiane B, Diger H R. Negative regulation of nitrate reductase gene expression by glutamine or as paragine accumulating in leaves of sulfur2 deprived tobacco. Planta, 2000, 211: 587–595
[26]Polcyn W, Lucinski R. Effect of N oxyanions on anaerobic induction of nitrite reductase in subcellular fraction of Bradyrhizobium sp. (Lupinus). Antonie van Leeuwenhoek, 2009, 95: 159–164
[27]Lin Z-P(林忠平). Plant Molecular Biology for 21st Century(走向21世纪的植物分子生物学). Beijing: Science Press, 2000. pp 271–287 (in Chinese)
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[8] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[11] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[14] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[15] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!