作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1398-1405.doi: 10.3724/SP.J.1006.2011.01398
曲存民1,付福友2,卢坤1,谢景梅1,刘晓兰1,黄杰恒1,李波1,王瑞1,谌利1,唐章林1,李加纳1,*
QU Cun-Min1,FU Fu-You2,LU Kun1,XIE Jing-Mei1,LIU Xiao-Lan1,HUANG Jie-Heng1,LI Bo1,WANG Rui1,CHEN Li1,TANG Zhang-Lin1,LI Jia-Na1,*
摘要: 以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜中油821为亲本杂交,后代通过“一粒传法”连续自交7代构建重组自交系,2007年分别在重庆市北碚区和万州区2个试验基地种植重组自交系群体,利用本实验室已构建的遗传连锁图谱和复合区间作图法(CIM),对种皮木质素含量进行测定及QTL定位分析。结果在2个环境中共检测到12个种皮木质素含量相关的QTL,分别位于4个不同的连锁群,单个QTL可解释性状表型变异的4.50%~8.79%;在第3连锁群上检测到1个QTL与同一标记EM19ME23/130连锁,其余10个QTL位置不同;在北碚检测到的QTL主要分布于第20连锁群,在万州检测到的QTL主要位于第3连锁群;部分种皮木质素的QTL与种胚类黄酮和种皮色泽的QTL位于相近区间,在北碚和万州种皮木质素含量与种胚类黄酮存在极显著和显著正相关关系。结果表明甘蓝型油菜种皮木质素含量表现为多基因控制的数量性状,基因表达受环境影响较大;油菜种皮木质素合成和类黄酮的积累可能受相同关键基因调控或者具有部分相同的合成代谢途径。
[1]Fu T-D(傅廷栋). Chinese rapeseed production and the improvement of the status and prospects. Anhui Agric Sci Bull (安徽农学通报), 2000, 6(1): 2-9 (in Chinese) [2]Yuan L(袁莉), Ma Y(马英), Li A-K(李爱科). Application of Double-low rapeseed meal in feed. Sci Technol Cereals Oils Foods (粮油食品科技), 2003, 11(2): 34-36 (in Chinese) [3]Liu T-X(刘唐兴). Objective and methodology of rapeseed quality breeding. Mod Agric Sci Technol (现代农业科技), 2007, (8): 95-97 (in Chinese) [4]Xi P-B(席鹏彬), Li D-F(李德发), Gong L-M(龚丽敏). Application the nutritional quality of rapeseed meal in dairy pig diet. Feed Ind (饲料工业), 2002, 23(6): 5-9 (in Chinese) [5]Wang N-J(王宁娟). Application of rapeseed meal. Feed Rev (饲料博览), 2001, (9): 8-9 (in Chinese) [6]Franke R, McMichael C M, Meyer K, Shirley A M, Cusumano J C, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate-5-hydroxylase. Plant J, 2000, 22: 223-234 [7]Soltani B M, Ehlting J, Douqlas C J. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis. Biotechnol J, 2006, 1: 1124-1136 [8]Sibout R, Baucher M, Gatineau M, Doorsselaere J V, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W, Jouanin L. Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde-5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem, 2002, 40: 1087-1096 [9]Zhong R, Morrison W H III, Negrel J, Ye Z H. Dual methylation pathways in lignin biosynthesis. Plant Cell, 1998, 10: 2033-2045 [10]Zhong R Q, Morrison W H III, Himmelsbach D S, Poole F L, Ye Z H. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol, 2000, 124: 563-578 [11]Hu W J, Harding S A, Lung J, Popko J L, Ralph J, Stokke D D, Tsai C J, Chiang V L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol, 1999, 17: 808-812 [12]Zhao Y-L(赵艳玲), Lu H(陆海), Tao X-J(陶霞娟), Chen X-M(陈雪梅), Jiang X-N(蒋湘宁). Modulate the lignin biosynthesis by expression GRP1.8 promoter: anti-4CL1 gene in transgenic tobacco. J Beijing For Univ (北京林业大学学报), 2003, 25(4): 16-20 (in Chinese with English abstract) [13]Guo D, Chen F, Inoue K, Blount J W, Dixon R A. Down-regulation of caffeic acid 3-O-methyltransferase and caffepu; CpA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 2001, 13: 73-88 [14]Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Mila I, Lapierre C, Riqau J, Puiqdomenech P, Jauneau A, Diqonnet C, Boudet A M, Goffner D, Pichon M. Down-regulation of Caffeicacid O-Methyltransferase in maize revisited using a transgenic approach. Plant Physiol, 2002, 130: 1675-1685 [15]Thumma B R, Nolan M F, Evans R, Moran G F. Polymorphisms in Cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 2005, 171: 1257-1265 [16]Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196 [17]Fu F-Y(付福友). Construction of A High-Density Genetic Linkage Map and QTL Analysis Of Quality-Related Traits in Brassica napus L. PhD Dissertation of Southwest University, 2007 (in Chinese with English abstract) [18]Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181 [19]Gül M K, Becker H C, Ecke W. QTL mapping and analysis of QTL×nitrogen interactions for protein and oil in Brassica napus L. In: Proc. 11th Intl. Rapeseed Congress, Copenhagen, Denmark, 2003. pp 6-10 [20]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-46 [21]Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, DheuJ E, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet, 2006, 113: 1331-1345 [22]Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67-80 [23]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci, 2005, 45: 51-59 [24]Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33-38 [25]Ruecker B. On the inheritance of seed coat colour in winter oilseed rape (Brassica napes L.). Cruciferae Newsl, 1991, 14: 50-51 [26]Fu F Y, Liu L Z, Chai Y R, Chen L Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 9: 840-854 [27]Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38: 534-542 [28]Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077-1082 [29]Liu L-Z(刘列钊), Meng J-L(孟金陵), Lin N(林呐), Chen L(谌利), Tang Z-L(唐章林), Zhang X-K(张学昆), Li J-N(李加纳). QTL mapping of seed coat color for yellow seeded Brassica napus. Acta Genet Sin (遗传学报), 2006, 33(2): 181-187 (in Chinese with English abstract) [30]Mayer A, Staples R. Laccase: new functions for an old enzyme. Phytochemistry, 2002, 60: 551-565 [31]Morrison I. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops. J Sci Food Agric, 1972, 23: 455-463 [32]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Version 2.5 [computer program] Raleigh, NC: Department of Statistics, North Carolina State University, 2006, [2010-11-06] http://statgen. ncsu.edu/qtlcart/WQTLCart.htm [33]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199 [34]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Mori-Shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 111-131 [35]Li H-H(李慧慧), Zhang L-Y(张鲁燕), Wang J-K(王建康). Analysis and Answers to Frequently Asked Questions in Quantitative Trait Locus Mapping. Acta Agron Sin (作物学报), 2010, 36(6): 918-931 (in Chinese with English abstract) [36]Qu C-M(曲存民), Fu F-Y(付福友), Liu L-Z(刘列钊), Wang J-F(王家丰), Mao L-J(毛丽佳), Yuan X-Y(原小燕), Chen L(谌利), Li J-N(李加纳). QTL Mapping of Embryonic Pigment Components in Brassica napus L. Acta Agron Sin (作物学报), 2009, 35(2): 286-294 (in Chinese with English abstract) [37]Ecke W, Uzunova M, Weißleder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995, 91: 972-977 [38]Pourcel L, Routaboul J, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980 [39]Gale M D, Devos K. Plant comparative genetics after 10 years. Science, 1998, 282: 656-659 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[11] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[12] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[15] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
|