欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1389-1397.doi: 10.3724/SP.J.1006.2011.01389

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaCRF2基因的克隆及其在烟草中的初步功能验证

郭丽香1,2,高世庆2,**,唐益苗2,王永波2,刘美英3,张朝3,徐蓓1,2,连微微1,2,赵昌平2,*   

  1. 1 首都师范大学生命科学学院, 北京100048; 2 北京市农林科学院杂交小麦工程技术研究中心, 北京100097; 3 中国科学技术大学研究生院化学系, 安徽合肥 230026
  • 收稿日期:2010-12-11 修回日期:2011-03-06 出版日期:2011-08-12 网络出版日期:2011-05-11
  • 通讯作者: 赵昌平, E-mail: zhaochangping401@vip.sohu.com, Tel: 13601096398
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08002-002),北京市自然科学基金项目(5102016),北京市科技新星计划项目(2007B056,2008B035)和北京农林科学院院青年基金项目资助。

TaCRF2 Gene Isolation from Triticum aestivum and Primary Function Validation in Tobacco (Nicotiana tabacum L.)

GUO Li-Xiang1,2,GAO Shi-Qing2,**,TANG Yi-Miao2,WANG Yong-Bo2,LIU Mei-Ying3,ZHANG Zhao3,XU Bei1,2,LIAN Wei-Wei1,2,ZHAO Chang-Ping2,*   

  1. 1 College of Life Sciences, Capital Normal University, Beijing 100048, China; 2 Beijing Hybrid Wheat Engineering and Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 3 Department of Chemistry, Graduate School of University of Science and Technology of China, Hefei 230026, China
  • Received:2010-12-11 Revised:2011-03-06 Published:2011-08-12 Published online:2011-05-11
  • Contact: 赵昌平, E-mail: zhaochangping401@vip.sohu.com, Tel: 13601096398

摘要: 通过RT-PCR从小麦cDNA中扩增获得一个锌指蛋白基因TaCRF2, 该基因的cDNA长度为847 bp, 序列分析表明它编码一个含有280个氨基酸的蛋白质。在线软件预测该蛋白质的相对分子质量为30.97 kD, 等电点为7.03, 且在C-末端含有一个典型的RING-H2型锌指蛋白结构域, 在N-末端含有两个跨膜结构域。氨基酸序列比对发现, TaCRF2与水稻中的一个RING型锌指蛋白(ABF95226)的相似度为82%。亚细胞定位分析显示, 该蛋白分布在细胞核和细胞膜上。Real-time PCR表达特性分析显示, TaCRF2基因的表达受干旱、盐和ABA的强烈诱导, 低温对该基因的表达量影响不明显。初步功能验证发现过表达TaCRF2基因增强了转基因烟草对干旱和盐胁迫的耐性。

关键词: 烟草, 小麦, RING-H2型锌指蛋白, TaCRF2基因, 干旱胁迫, 盐胁迫

Abstract: Wheat, like other crops, suffers from drought, salt, low-temperature and other abiotic stresses, seriously resulting in yield decline. It is an effective way for crop breeding to improve resistance via molecular biology techniques. Zinc finger protein, an important transcription factor commonly found in plant, can regulate the expression of multiple stress-inducible genes and enhance comprehensive resistances effectively. In this study, a RING-H2 zinc ?nger protein gene, designated as TaCRF2, was isolated from Triticum aestivum by RT-PCR. Its cDNA was 847 bp and encoded a putative protein of 280 amino acids with a predicted molecular mass of 30.97 kD and an isoelectric point (PI) of 7.03. A typical RING-H2 finger domain was found at the C-terminal region of TaCRF2 protein, and two transmembrane domains were found at the N-terminal region. Alignment of amino acid sequence showed that TaCRF2 was 82% identical to Oryza sativa putative RING zinc finger protein ABF95226. Subcellular localization analysis showed that the TaCRF2 was expressed in both nuclear and cytoplasm membrane. Real-time PCR showed that the transcript of TaCRF2 was strongly induced by drought, salinity and cold to some extent. The TaCRF2 gene was transformed into tobacco cultivar Wisconsin 38 (W38) by Agrobacterium mediated under the control of the CaMV 35S promoter. Under drought, salt and low-temperature stresses, transgenic tobacco lines carrying TaCRF2 gene developed the strong primary root, more lateral root and smaller yellow leaves, and performed higher tolerance to these stresses than the wide-type tobaccos, The primary function verification showed that overexpression of TaCRF2 gene in tobaccos enhanced their tolerance to drought and salinity stresses. This study will help further research of wheat RING-H2 type zinc finger protein reactions in the role of stress resistance, and bring wheat resistance breeding excellent candidate genes.

Key words: Tobacco, Triticum aestivum, RING-H2 zinc-finger protein, TaCRF2 gene, Drought stress, Salinity stress

[1]Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 2004, 101: 6309–6314
[2]Liu X(刘欣), Li Y(李云). Progresses on transcription factors related to plant stress-tolerance. Chin Agric Sci Bull (中国农学通报), 2006, 22(4): 61–65 (in Chinese)
[3]Miller J, Mclachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J, 1985, 4: 1609–1614
[4]Lee M S, Gippert G P, Soman K V, Case D A, Wright P E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 1989, 245: 635–637
[5]Laity J H, Lee B. Zinc-?nger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11: 39–46
[6]Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081–1085
[7]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871
[8]Kam J, Gresshoff P, Shorer R. Expression analysis of RING zinc ?nger genes from Triticum aestivum and identi?cation of TaRZF70 that contains four RING-H2 domains and differentially responds to water de?cit between leaf and root. Plant Sci, 2007, 173: 650–659
[9]Borden K L, Freemont P S. The RING ?nger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol, 1996, 6: 395–401
[10]Freemont P S. Ubiquitination: RING for destruction. Current Biol, 2000, 10: R84–R87
[11]Satijn D P, Gunster M J, van der Vlag J, Hamer K M, Schul W, Alkema M J, Saurin A J, Freemont P S, van Driel R, Otte A P. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol, 1997, 17: 4105–4113
[12]Yang X-H(杨秀红), Sun C(孙超), Hu Y-L(胡鸢雷), Lin Z-P(林忠平). Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci , 2008, 33: 103–112
[13]Lagudah E S, Dubcovsky J, Powell W. Wheat genomics. Plant Physiol Biochem, 2001, 39: 335–344
[14]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 377–403
[15]Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA, 1998, 95: 5857–5864
[16]Hagio T. Optimizing the particle bombardment method for efficient genetic transformation. Jpn Agric Res Q, 1998, 32: 239–247
[17]Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice. Theor Appl Genet, 1998, 97: 267–274
[18]Anoop N, Gupta A K. Transgenic indica rice cv IR-50 overexpressing Vigna aconitifolia delta-1-pyrroline-5-carboxylae synthetase cDAN shows tolerance to high salt. J Plant Biochem Biotechnol, 2003, 12: 109–116
[19]Liu L-H(刘丽华), Lin L(林玲), Lu G-D(鲁国东), Wang Z-H(王宗华). Cloning, expression and analysis of a rice C3HC4-type zinc finger protein encoding gene. Chin Agric Sci Bull (中国农学通报), 2009, (15): 35–39 (in Chinese)
[20]Zhang Y Y, Yang C W, Li Y, Zheng N Y, Chen H, Zhao Q Z, Gao T, Guo H S, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19: 1912–1929
[21]Freemont P S. Ubiquitination: RING for Destruction. Curr Biol, 2000, 10: 84–87
[22]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734–2746
[23]Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445–462
[24]Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007, 226: 1007–1016
[25]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410–417
[26]Wu X-C(吴学闯), Cao X-Y(曹新有), Chen M(陈明), Zhang X-K(张晓科), Liu Y-N(刘阳娜), Xu Z-S(徐兆师), Li L-C(李连城), Ma Y-Z(马有志). Isolation and expression patten assay of a C3HC4-type RING zinc finger protein gene GmZFP1 in Glycine max L. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 343–348 (in Chinese with English abstract)
[27]Qiao H, Chang K N, Yazaki J, Ecker J R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev, 2009, 23: 512–521
[28]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871
[29]Xu R Q, Li Q Q. A RING-H2 zinc-?nger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol, 2003, 53: 37–50
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!