作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1389-1397.doi: 10.3724/SP.J.1006.2011.01389
郭丽香1,2,高世庆2,**,唐益苗2,王永波2,刘美英3,张朝3,徐蓓1,2,连微微1,2,赵昌平2,*
GUO Li-Xiang1,2,GAO Shi-Qing2,**,TANG Yi-Miao2,WANG Yong-Bo2,LIU Mei-Ying3,ZHANG Zhao3,XU Bei1,2,LIAN Wei-Wei1,2,ZHAO Chang-Ping2,*
摘要: 通过RT-PCR从小麦cDNA中扩增获得一个锌指蛋白基因TaCRF2, 该基因的cDNA长度为847 bp, 序列分析表明它编码一个含有280个氨基酸的蛋白质。在线软件预测该蛋白质的相对分子质量为30.97 kD, 等电点为7.03, 且在C-末端含有一个典型的RING-H2型锌指蛋白结构域, 在N-末端含有两个跨膜结构域。氨基酸序列比对发现, TaCRF2与水稻中的一个RING型锌指蛋白(ABF95226)的相似度为82%。亚细胞定位分析显示, 该蛋白分布在细胞核和细胞膜上。Real-time PCR表达特性分析显示, TaCRF2基因的表达受干旱、盐和ABA的强烈诱导, 低温对该基因的表达量影响不明显。初步功能验证发现过表达TaCRF2基因增强了转基因烟草对干旱和盐胁迫的耐性。
[1]Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 2004, 101: 6309–6314 [2]Liu X(刘欣), Li Y(李云). Progresses on transcription factors related to plant stress-tolerance. Chin Agric Sci Bull (中国农学通报), 2006, 22(4): 61–65 (in Chinese) [3]Miller J, Mclachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J, 1985, 4: 1609–1614 [4]Lee M S, Gippert G P, Soman K V, Case D A, Wright P E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 1989, 245: 635–637 [5]Laity J H, Lee B. Zinc-?nger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11: 39–46 [6]Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081–1085 [7]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871 [8]Kam J, Gresshoff P, Shorer R. Expression analysis of RING zinc ?nger genes from Triticum aestivum and identi?cation of TaRZF70 that contains four RING-H2 domains and differentially responds to water de?cit between leaf and root. Plant Sci, 2007, 173: 650–659 [9]Borden K L, Freemont P S. The RING ?nger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol, 1996, 6: 395–401 [10]Freemont P S. Ubiquitination: RING for destruction. Current Biol, 2000, 10: R84–R87 [11]Satijn D P, Gunster M J, van der Vlag J, Hamer K M, Schul W, Alkema M J, Saurin A J, Freemont P S, van Driel R, Otte A P. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol, 1997, 17: 4105–4113 [12]Yang X-H(杨秀红), Sun C(孙超), Hu Y-L(胡鸢雷), Lin Z-P(林忠平). Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci , 2008, 33: 103–112 [13]Lagudah E S, Dubcovsky J, Powell W. Wheat genomics. Plant Physiol Biochem, 2001, 39: 335–344 [14]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 377–403 [15]Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA, 1998, 95: 5857–5864 [16]Hagio T. Optimizing the particle bombardment method for efficient genetic transformation. Jpn Agric Res Q, 1998, 32: 239–247 [17]Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice. Theor Appl Genet, 1998, 97: 267–274 [18]Anoop N, Gupta A K. Transgenic indica rice cv IR-50 overexpressing Vigna aconitifolia delta-1-pyrroline-5-carboxylae synthetase cDAN shows tolerance to high salt. J Plant Biochem Biotechnol, 2003, 12: 109–116 [19]Liu L-H(刘丽华), Lin L(林玲), Lu G-D(鲁国东), Wang Z-H(王宗华). Cloning, expression and analysis of a rice C3HC4-type zinc finger protein encoding gene. Chin Agric Sci Bull (中国农学通报), 2009, (15): 35–39 (in Chinese) [20]Zhang Y Y, Yang C W, Li Y, Zheng N Y, Chen H, Zhao Q Z, Gao T, Guo H S, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19: 1912–1929 [21]Freemont P S. Ubiquitination: RING for Destruction. Curr Biol, 2000, 10: 84–87 [22]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734–2746 [23]Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445–462 [24]Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007, 226: 1007–1016 [25]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410–417 [26]Wu X-C(吴学闯), Cao X-Y(曹新有), Chen M(陈明), Zhang X-K(张晓科), Liu Y-N(刘阳娜), Xu Z-S(徐兆师), Li L-C(李连城), Ma Y-Z(马有志). Isolation and expression patten assay of a C3HC4-type RING zinc finger protein gene GmZFP1 in Glycine max L. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 343–348 (in Chinese with English abstract) [27]Qiao H, Chang K N, Yazaki J, Ecker J R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev, 2009, 23: 512–521 [28]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871 [29]Xu R Q, Li Q Q. A RING-H2 zinc-?nger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol, 2003, 53: 37–50 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[7] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[8] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[9] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[10] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[13] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
|