欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1917-1925.doi: 10.3724/SP.J.1006.2011.01917

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

春化和光周期基因等位变异在23个国家小麦品种中的分布

杨芳萍1,2,韩利明3,阎俊4,夏先春1,张勇1,曲延英3,王忠伟1,何中虎1,5,*   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081; 2甘肃省农业科学院小麦研究所, 甘肃兰州 730070; 3新疆农业大学农学院, 新疆乌鲁木齐 830052; 4 中国农业科学院棉花研究所, 河南安阳 455000; 5 CIMMYT中国办事处, 北京 100081
  • 收稿日期:2011-03-07 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2011G-3), “西部之光”人才培养计划, 国家自然科学基金项目(30960193)和甘肃省农业科学院创新项目(2009GAAS20)资助。

Distribution of Allelic Variation for Genes of Vernalization and Photoperiod among Wheat Cultivars from 23 Countries

YANG Fang-Ping1,2,HAN Li-Ming3,YAN Jun4,XIA Xian-Chun1,ZHANG Yong1,QU Yan-Ying3,WANG Zhong-Wei1,HE Zhong-Hu1,5,*   

  1. 1 Institute of Crop Sciences / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 3 College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China;
    4 Cotton Research Institute, CAAS, Anyang 455000, China; 5 CIMMYT China Office, Beijing 100081, China
  • Received:2011-03-07 Revised:2011-06-25 Published:2011-11-12 Published online:2011-09-06
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

摘要: 为促进国外资源在我国小麦育种中的有效利用,以小麦春化基因Vrn-A1Vrn-B1Vrn-D1Vrn-B3及光周期位点Ppd-D1标记对23个国家的755份品种检测,同时在河南安阳秋播,观察抽穗期和成熟期。分子标记检测结果表明,Vrn-A1Vrn-B1Vrn-D1vrn-A1+vrn-B1+ vrn-D1的分布频率分别为13.0%、21.1%、15.6%和64.2%,显性等位变异Vrn-B3在检测材料中缺失。春化基因显性等位变异Vrn-A1Vrn-B1Vrn-D1主要分布在中国春麦区和长江中上游冬麦区、意大利、印度、日本、加拿大、墨西哥、智利、阿根廷和澳大利亚,上述地区的小麦一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国北方、美国中部和南部、德国、法国、挪威、乌克兰、俄罗斯、伊朗、土耳其、匈牙利、保加利亚、罗马尼亚和塞尔维亚,这些地区的小麦为冬性类型。光周期迟钝型Ppd-D1a的分布频率为55.2%。光周期敏感等位变异Ppd-D1b主要分布在纬度较高的地区,即美国各麦区以及德国、挪威、匈牙利、中国东北、加拿大、智利和阿根廷,来自其余麦区的品种均携带光周期迟钝等位变异Ppd-D1a;携带Ppd-D1a的品种在河南安阳大部分能够成熟,而携带Ppd-D1b的品种在河南安阳基本不能成熟。在安阳春化显性等位变异Vrn-A1a未加速小麦抽穗,而携带Vrn-B1Vrn-D1等位变异的部分春化需求品种能够正常抽穗,主要因安阳生长季节的温度能够满足春化需求。

关键词: 小麦, 春化基因, 光周期基因, 分子鉴定, 冬春性, 抽穗期

Abstract: Molecular markers for vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 and photoperiod gene Ppd-D1 were used to detect the presence of these genes among 755 cultivars from 23 countries. Days to heading and physiological maturity of these cultivars were also recorded in Anyang, Henan Province, China to provide information for their utilization in Chinese wheat breeding program. Frequencies of Vrn-A1, Vrn-B1, Vrn-D1, and vrn-A1+vrn-B1+vrn-D1 were13.0%, 21.1%, 15.6%, and 64.2%, respectively. Dominant allele Vrn-B3 was absent in all tested materials. Dominant vernalization alleles Vrn-A1, Vrn-B1, and Vrn-D1 were mainly observed in Chinese spring wheat and middle and upper Yangtze Valley winter wheat regions, Italy, India, Japan, Canada, Mexico, Chile, Argentina, and Australia with spring type, while cultivars carryied all recessive alleles at the four vernalization loci. The gene recombination of vrn-A1, vrn-D1, and Vrn-B1 was found in winter wheat regions of Northern China, middle and southern US, Germany, France, Norway, Ukraine, Russia, Turkey, Iran, Hungary, Bulgaria, Romania, and Serbia, where the wheat growth habit is winter type.The frequency of Ppd-D1a was 55.2%, and photoperiod sensitive allele Ppd-D1b was mainly observed in cultivars from higher latitude regions of US, Germany, Norway, Hungary, Northeastern China, Canada, Chile and Argentina; while photoperiod insensitive allele Ppd-D1a was observed in the other wheat-growing regions. Most of cultivars with photoperiod insensitive allele Ppd-D1a could completephysiological maturity in Anyang, whereas cultivars from Germany, Norway, Hungary, Northwestern US, Northeast China, Chile and Argentina could not mature well. In Anyang, flowering time was not speeded up by the presence of dominant vernalization allele Vrn-A1a, cultivars with Vrn-B1 and Vrn-D1 could head normally due to the completion of vernalization requirement during winter season.

Key words: Common wheat, Vernalization gene, Photoperiod gene, Molecular marker, Wheat growth habit, Heading date

[1]Worland A J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49–57
[2]Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385–394
[3]Snape J W, Butterworth K, Whitechurch E, Worland A J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185–190
[4]Iwaki K, Haruna S, Niwa T, Kato K. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breeding, 2001, 120: 107–114
[5]Iwaki K, Nakagawa K, Kuno H, Kato K. Ecogeographical differentiation in East Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica, 2000, 111: 137–143
[6]Pugsley A T. A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Resour, 1971, 22: 21–23
[7]Pugsley A T. Additional genes inhibiting winter habit in wheat. Euphytica, 1972, 21: 547–552
[8]McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat, In: Slinkard A E ed. Proc 9th Intl Wheat Genet Symp. Vol. 5. University of Saskatchewan, Saskatoon, SK, Canada: Univ. Extension Press, 1998. pp 1–235
[9]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581–19586
[10]Chen Y H, Brett F, Carver, Wang S W, Cao S H, Yan L L. Genetic regulation of developmental phases in winter wheat. Mol Breed, 2010, 26: 573–582
[11]Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet, 2010, 120: 543–552
[12]Zhang X K, Xia X C, Xiao Y G, Zhang Y, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458–470
[13]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268
[14]Jiang Y(姜莹), Huang L-Z (黄林周), Hu Y-G (胡银岗). Distribution of vernalization genes in Chinese wheat landraces and their relationship with winter hardness. Sci Agric Sin (中国农业科学), 2010, 43(13): 2619–2632 (in Chinese with English abstract)
[15]Zhang X-K(张晓科), Xia X-C(夏先春), He Z-H(何中虎), Zhou Y(周阳). Distribution of vernalization gene Vrn-A1 in Chinese wheat cultivars detected by STS marker. Acta Agron Sin (作物学报), 2006, 32(7): 1038–1043 (in Chinese with English abstract)
[16]Iqbal M, Shahzad A, Ahmed I. Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars. Electron J Biotechnol, DOI: 10.2225/vol14-issue1-fulltext-6
[17]Welsh J R, Keim D L, Pirasteh B, Richards R D. Genetic control of photoperiod response in wheat. In: Proc 4th Intl Wheat Genet Symp. University of Missouri, Columbia, 1973. pp 897–884
[18]Law C N, Sutka J, Worland A J. A genetic study of day-length response in wheat. Heredity, 1978, 41: 185–191
[19]Tanio M, Kato K. Development of near-isogenic lines for photoperiod-insensitive genes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development. Breed Sci, 2007, 57: 65–72
[20]Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721–733
[21]Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of photoperiod insensitive gene Ppd-D1a (Ppd1) in Chinese common wheat. Euphytica, 2009, 165: 445–452
[22]Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: Natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387–395
[23]Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet, 2004, 109: 1677–1686
[24]Fu D, Szücs P, Yan L, Helguera M, Skinner J S, Zitzewitz J V, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54–65
[25]Zhuang Q-S(庄巧生). Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[26]Crofts H J. On defining a winter wheat. Euphytica, 1989, 44: 225–234
[27]Porter J R, Gawith M.: Temperatures and the growth and development of wheat: a review. Eur J Agron, 1999, 10: 23–36
[28]Pidwirny M, Jones S. Chapter 7. Introduction to the atmosphere: (v) Climate classification and limatic regions of the world. In: Fundamentals of Physical Geography (2nd Edn).
[2010-12-03].http://www.physicalgeography.net/fundamentals/7v.html
[29]Iqbal M, Navabi A, Salmon D F, Yang R C, Murdoch B M, Moore S S, Spaner D. Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica, 2007, 154: 207–218
[30]Van Beem J, Mohler V, Lukman R, Van Ginkel M, William M, Crossa J, Worland A J. Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci, 2005, 45: 2113–2119
[31]Kato K, Yamagata H. Method for evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. Jpn J Breed, 1988, 38: 172–186
[32]Eagles H A, Cane K, Kuchel H, Hollamby G J, Vallance N, Eastwood R F, Gororo N N, Martin P J. Photoperiod and vernalization gene effects in southern Australian wheat. Crop & Pasture Sci, 2010, 61:721–730
[33]Dong Y-C(董玉琛), Hao C-Y(郝晨阳), Wang L-F(王兰芬), Zhang X-Y(张学勇), Gao H-T(高海涛), Zhang C-J(张灿军). Evaluation of agronomic traits of 358 wheat varieties introduced from Europe. J Plant Genet Resour (植物遗传资源学报), 2006, 7(2): 129–135 (in Chinese with English abstract)
[34]Willlam H M, Singh P, Trethow R, Ginkel M, Pellegrinshi A, Huerta-Espino J, Hoisingtond D. Biotechnology applications for wheat improvement at CIMMYT. Turk J Agric For, 2005, 29: 113–119
[35]Lawrence G J. The high-molecular-weight glutenin subunit composition of Australian wheat cultivars. Aust J Agric Res, 1986, 37: 125–133
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!