欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1926-1934.doi: 10.3724/SP.J.1006.2011.01926

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯块茎糖基转移酶基因的克隆及其RNAi载体的构建

王旺田1,2,张金文1,2,*,王蒂1,2,*,张俊莲1,2,司怀军1,2,陶士珩3   

  1. 1 甘肃农业大学农学院, 甘肃兰州 730070; 2 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070; 3 西北农林科技大学生命科学学院, 陕西杨凌 712100
  • 收稿日期:2011-04-27 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 张金文, E-mail: jwzhang305@163.com, Tel: 0931-7631167; 王蒂, E-mail: wangd@gsau.edu.cn, Tel: 0931-7631167
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB134404), 甘肃省自然科学基金项目(0710RJZA088)和教育部博士生国内访学项目(Z107-020901)资助。

Cloning of Rhamnosyl Transferase Gene and Construction of Its RNAi Vector in Potato

WANG Wang-Tian1,2,ZHANG Jin-Wen1,2,*,WANG Di1,2,*,ZHANG Jun-Lian1,2,SI Huai-Jun1,2,TAO Shi-Heng3   

  1. 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China; 3 College of Life Sciences, Northwest A&F University, Yanglin 712100, China
  • Received:2011-04-27 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 张金文, E-mail: jwzhang305@163.com, Tel: 0931-7631167; 王蒂, E-mail: wangd@gsau.edu.cn, Tel: 0931-7631167

摘要: 为探讨鼠李糖基转移酶(rhamnosyltransferase, sgt3)基因与类固醇糖苷生物碱(steroidal glycoalkaloid, SGAs)合成关系, 揭示sgt3基因在SGAs合成中的作用, 本研究根据GenBanK No:DQ266437保守区设计特异引物, 通过RT-PCR技术获得马铃薯块茎sgt3相似基因;采用生物信息学相关软件分析, 预测sgt3相似基因cDNA序列编码的蛋白质结构和功能, 构建基于sgt3基因的植物干扰表达载体。结果表明, 克隆的sgt3相似基因与报道的sgt3基因序列相似性达到99.54%, 其ORF长1 500 bp, 编码505个氨基酸残基, 具有UDPG糖基转移酶保守结构域及许多重要功能位点;三级结构预测表明, 该氨基酸同糖基转移酶单体结构模型相似, 为糖基转移酶家族成员, 表明可能具有合成类固醇糖苷生物碱功能, 基因序列已注册到GenBank, 序列登录号为HM188447。以此为靶序列, 构建由Actin启动子和CIPP启动子驱动的与sgt1sgt2基因相似度高的含有sgt3基因序列的干扰表达载体, 将为糖苷生物碱的合成、代谢的进一步研究及低糖苷生物碱转基因马铃薯品种的培育奠定基础。

关键词: 马铃薯, 鼠李糖基转移酶, 基因克隆, 序列分析, RNAi载体

Abstract: Steroidal glycoalkaloids (SGAs) are potentially harmful metabolites found in potatoes and other Solanaceous plants. SGAs accumulation affects food quality and safety, we hope to use molecular biology methods to reduce SGAs content and assist breeding efforts to ensure food safety, develop new and improved varieties of potatoes. To investigate the relationship between the gene expression of the rhamnosyltransferase (sgt3) and the biosynthesis of steroidal glycoalkaloid (SGAs), and reveal the role of sgt3 gene in biosynthetsis of potato steroidal glycoalkaloid, similar gene cDNA sequence of the potato sgt3 was obtained from the total RNA of potato tubers by reverse transcription polymerase chain reaction (RT-PCR) using specific primers synthesized according to the conserved domain of GenBanK No: DQ266437 sequence. The protein function and structure of the similar sgt3 gene cDNA sequence were predicted and analyzed by related software of bioinformatics technology. Interference expression vector based on sgt3 gene was constructed. The Blast result showed that the gene sequence shared a high level of similarity with the sgt3 gene in GenBank (accession No: DQ266437) and its homology was 99.54%, and similarity of the amino acid sequence was 99%. The full-length of cDNA was 1 500 bp, which contained 505 amino acids, UDPG glycosyltransferase conserved domain and many important functional sites. The 3D structure of protein was predicted by homology comparative modeling in Swiss-Model, the results showed that the 3D structure of SGT3 was highly similar to that of the glycosyltransferase, so it was inferred that SGT3 should be a member of glycosyltransferase superfamily that has function of steroidal glycoalkaloid. Sgt3 similar gene obtained here was rhamnosyl transferase gene, and its sequence was submitted with GenBank No: HM188447. The RNA interference transformation expression vector in which sgt3 gene was regulated by Actin and CIPP promoters was constructed, which will lay a solid foundation for the synthesis of alkaloids glycosides, further research of metabolism and cultivation of transgenic potato varieties with low indican alkaloids character.

Key words: Potato, sgt3 gene, Gene cloning, Sequence analysis, RNA interference vector

[1]Faeth S H, Bush L P, Sullivan T J. Peramine alkaloid variation in neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. J Chem Ecol, 2002, 28: 1511–1526
[2]Ji Y(纪瑛), Lin H-M(蔺海明), Chen Y(陈垣), Zhang S-R(张守润). Nitrogen nutrition effects on character, biomass and alkaloid accumulation of Sophora alopecuroides. Acta Pratac Sin (草业学报), 2008, 17(3): 40–46 (in Chinese with English abstract)
[3]Tang Z-H(唐中华), Yu J-H(于景华), Yang F-J(杨逢建), Zu Y-G(祖元刚). Metabolic biology of plant alkaloids. Chin Bull Bot (植物学通报), 2003, 20(6): 696–702 (in Chinese with English abstract)
[4]Lu S-P(鲁守平), Sui X-X(隋新霞), Sun Q(孙群), Sun B-Q(孙宝启). Biological functions of secondary metabolism of medicinal plants and influences of ecological environment. Nat Prod Res Dev (天然产物研究与开发), 2006, 18(6): 1027–1032 (in Chinese with English abstract)
[5]Bejarano L, Mignolet E, Devaux A, Espinola N, Carraso E, Larondelle Y. Glycoalkaloids in potato tubers: the effect of variety and drought stress on the a-solanine and a-chaconine contents of potatoes. J Sci Food Agric, 2000, 80: 2096–2100
[6]Breton C, Mucha J, Jeanneau C. Structural and functional features of glycosyltransferases. Biochimie, 2001, 83: 713–718
[7]Wang J, Hou B k. Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol China, 2009, 4: 39–46
[8]Ginzberg I, Tokuhisa J G, Veilleux R E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res, 2009, 52: 1–15
[9]McCue K F, Allen P V, Shepherd L V T, Blake A, Malendia M M, Rockhold D R, Novy R G, Stewart D, Davies H V, Belknap W R. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry, 2007, 68: 327–334
[10]Archana T. RNA interference revolution. Electr J Biotechnol, 2003, 6: 39–49
[11]Hamilton A J, Baulcombe D C. A novel species of small antisense RNA in post-transcripional gene silecng. Science, 1999, 286: 950–952
[12]Wesley S V, Helliwell C A, Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Stoutjesdijk P A, Robinson S P, Gleave A P, Green A G, Waterhouse P M. Construct design for eficient, efective and high-throughput gene silencing in plants. Plant J, 2001, 27: 581–590
[13]Bass B L. Double-stranded RNA as a template for gene silencing. Cell, 2000, 101: 235–238
[14]Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biotech, 2007, 25: 1322–1326
[15]Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet, 2006, 38: 258–263
[16]Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279–1291
[17]Sunilkumar G, Campbell L M, Puckhaber L, Stipanovic R D, Rathore K S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103: 18054–18059
[18]Duan C G, Wang C H, Fang R X, Guo H S. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol, 2008, 82: 11084–11095
[19]Nagamatsu A, Masuta C, Senda M, Matsuural H, Kasai A, Hong J S, Kitamura K, Abe J, Kanazawa A. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotech J, 2007, 5: 778–790
[20]Mattew L. RNAi for plant functional genomics. Compar Funct Genom, 2004, 5: 240–244
[21]Tuttle J R, Idris A M, Brown J K, Haigler C H, Robertson D. Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol, 2008, 148: 41–50
[22]Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806–811
[23]Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H. RNA interference: producing decaffeinated coffee plants. Nature, 2003, 423: 823
[24]Sunilkumar G, Campbell L M, Puckhaber L, Stipanovic R D, Rathore K S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103: 18054–18059
[25]He S-L(何水林), Zheng J-G(郑金贵), Wang X-F(王晓峰), Wang Y-H(王燕华), Xu M(许明), Li B-L(李斌莲), Lin M(林明). Plant secondary metabolism: function, regulation and gene engineering. Chin J Appl Environ Biol (应用与环境生物学报), 2002, 8(5): 558–563 (in Chinese with English abstract)
[26]McCue K F, Allen P V, Shepherd L V T, Blake A, Whitworth J, Maccree M M, Rockhold D R, Stewart D, Davies H V, Belknap W R. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry, 2006, 67: 1590–1597
[27]Kita M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa S, Suhayda C G, Omura M. Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett, 2000, 469: 173–178
[28]Wang W-T(王旺田), Zhang J-W(张金文), Wang D(王蒂), Tao S-H(陶士珩), Ji Y-L(季彦林), Wu B(吴兵). Relation between light qualities and accumulation of steroidal glycoalkaloids as Well as signal molecule in cell in potato tubers. Acta Agron Sin (作物学报), 2010, 36(4): 629–635 (in Chinese with English abstract)
[29]Ma L-B(马凌波), Zhang D-B(张大兵), Shen M-S(沈明山), Chen L(陈亮), Chen M-Z(陈睦传). Cloning and sequencing of the cDNA of UDPG-glucosyltransferase from Stevia rebaudiana. J Xiamen Univ (厦门大学学报), 2002, 41(5): 531–535 (in Chinese with English abstract)
[30]Wesley S V, Helliwell C A, Smith N A,Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Waterhouse P M. Construct design for efficient, effective and high- throughput gene silencing in plants. Plant J, 2001, 27: 581–590
[31]Thomas C L, Jones L, Baulcombe D C, Maule A J. Size constrains for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J, 2001, 25: 417–425
[32]Burch-Smith T M, Miler J L. PTGS approaches to large-scale functional genomics in plants. In: Hannon ed. RNAi: a Guide to Gene Silencing. New York: Cold Spring Harbor Laboratory Press, 2003. pp 243–263
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!