欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2059-2065.doi: 10.3724/SP.J.1006.2011.02059

• 耕作栽培·生理生化 • 上一篇    下一篇

T6VS?6AL染色体易位与小麦籽粒HMW-GS和GMP积累的关系

徐甜甜1,蔡剑1,汪波1,亓增军2,戴廷波1,曹卫星1,姜东1,*   

  1. 1南京农业大学 / 农业部南方作物生理生态重点开放实验室 / 江苏省信息农业高技术研究重点实验室, 江苏南京210095; 2作物遗传与种质创新国家重点实验室, 江苏南京210095
  • 收稿日期:2011-02-25 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 姜东, E-mail: jiangd@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971734, 31028017, 31000686), 高等学校博士学科点专项科研基金(20090097110009), 国家公益性行业科研专项(200903003), 中央高校基本科研业务费专项资金(KYZ200915), 现代农业产业技术体系(nycytx-03)和江苏省粮食丰产科技工程项目(BE2009426)资助。

T6VS?6AL Chromosome Translocation Does Not Alter Accumulations of High Molecular Weight Glutenin Subunits and Glutenin Macropolymer in Wheat Grain

XU Tian-Tian1,CAI Jian1,WANG Bo,QI Zeng-Jun2,DAI Ting-Bo1,CAO Wei-Xing1,JIANG Dong1,*   

  1. 1 Key Laboratory of Crop Physiology and Ecology in Southern China, the Ministry of Agriculture / Hi-Tech Key Laboratory of Information Agriculture, Jiangsu Province / Nanjing Agricultural University, Nanjing 210095, China; 2 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-02-25 Revised:2011-06-25 Published:2011-11-12 Published online:2011-09-06
  • Contact: 姜东, E-mail: jiangd@njau.edu.cn

摘要: 从一套由92R137 (普通小麦-簇毛麦T6VS·6AL染色体易位系)和辉县红(地方小麦品种)杂交及以单粒传方法构建的F8重组近交家系(RIL)群体中, 筛选出4个HMW-GS亚基组合相同而蛋白质含量差异较大的代表性家系(含和不含染色体易位片段的家系各一组), 采用SDS-PAGE电泳和切胶比色的亚基定量方法, 研究了不同家系小麦籽粒灌浆期间HMW-GS和GMP含量动态。结果表明, 小麦籽粒各亚基在花后13 d均已形成, 但不同亚基起始形成时间不同;各亚基含量随灌浆进程呈上升趋势, 花后23 d到成熟期为快速积累期。染色体易位片段对籽粒HMW-GS和GMP含量与积累量无显著作用, 而籽粒HMW-GS含量以蛋白含量高的家系高于对应的低蛋白家系。

关键词: 小麦, 重组近交家系, T6VS•6AL, 高分子量谷蛋白亚基(HMW-GS), 谷蛋白大聚合体(GMP)

Abstract:  Four lines from an F8 recombinant inbred line (RIL) population were identified and classed into the the T6VS·6AL and non the T6VS·6AL groups. The grain protein content differed between the groups. The time-course changes in content and accumulation of HMW-GS and GMP during grain filling were detected. All HMW-glutenin subunits were detected at 13 d after anthesis (DAA) in grains of the four lines. However, the initial formation time differed within subunits. The content and accumulation of the HMW-GS increased during the whole grain filling period, and the rapid accumulation occurred from 23 DAA to maturity. The content and accumulation of HMW-GS and GMP showed no significant differences between the two groups. However, content and accumulation of HMW-GS of the high grain protein content lines were higher than those of the contrasting low protein content lines. In addition, grain gliadin content was found higher in the lines containing the T6VS·6AL chromosome translocation segment than in the contrasting lines.

Key words: Triticum aestivum L., Recombinant inbred lines (RILs), T6VS•6AL, High molecular weight glutenin subunits (HMW-GS), Glutenin macropolymer (GMP)

[1]Graveland A, Bosveld P, Lichtendonk. Extraction and fractionation of wheat flour proteins. J Sci Food Agric, 1982, 33: 1117–1128
[2]Shewry P R, Sayanova O, Tatham A S. Structure assembly and targeting of wheat storage proteins. J Plant Physiol, 1995, 145: 620–625
[3]Weegel P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing: I. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, 23: 103–111
[4]Payne P I, Law C N, Mudd E E. Control by homologous group 1 Chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet, 1980, 58: 113–120
[5]Blechl A, Lin J, Nguyen S, Chan R, Anderson O D, Dupont F M. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci, 2007, 45: 172–183
[6]Du J-Z(杜金哲), Hu S-L(胡尚连), Li W-X(李文雄), Liu J-H(刘锦红). The relationship between formation time and accumulation intensity of HMW-GS and its quality of spring wheat with different quality. Acta Agron Sin (作物学报), 2003, 29(1): 111–118 (in Chinese with English abstract)
[7]Zhang H-W(张华文), Tian J-C(田纪春), Guan Y-A(管延安), Yang Y-B(杨延兵), Ren W-G(任卫国). A study of the effects of high molecular weight glutenin subunits (HMW-GS) on quality traits, using recombinant inbred line-5 (RIL-6) population. Sci Agric Sin (中国农业科学), 2007, 40(3): 464–471 (in Chinese with English abstract)
[8]Zhu J B, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem, 1999, 76: 261–269
[9]Deng Z-Y(邓志英), Tian J-C(田纪春), Zhang Y-X(张永祥), Wang Y-X(王延训), Sun G-X(孙国兴), Sheng F(盛峰). Formation time and accumulation intensity of HMW-GS and LMW-GS and the relationship with SDS-sedimentation volume in winter wheat. Acta Agron Sin (作物学报), 2005, 31(3): 308–315 (in Chinese with English abstract)
[10]Pirozi M R, Margiotta B, Lafiandra D, Macritchie F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. J Cereal Sci, 2008, 48: 117–122
[11]Li W-H(李卫华), Xu Q(许琦), You M-S(尤明山), Xu J(徐杰), Chang C(常成), Liu W(刘伟), Liu L(刘丽), Li B-Y(李保云), Liu G-T(刘广田). Dynamic changes of GMP content and net genetic variation in wheat RIL population. Acta Agron Sin (作物学报), 2006, 32(5): 779–784 (in Chinese with English abstract)
[12]Yue H-W(岳鸿伟), Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星), Jiang D(姜东). Effects of nitrogen rate on accumulations of HMW-GS and GMP in wheat grain. Acta Agron Sin (作物学报), 2006, 32(11): 1678–1683 (in Chinese with English abstract)
[13]Chen Q-Z(陈全战), Cao A-Z(曹爱忠), Qi Z-J(亓增军), Zhang W(张伟), Chen P-D(陈佩度). Structural Change of 2V Chromosome of Haynaldia villosa induced by gametocidal chromosome 3C of Aegilops triuncialis. Sci Agric Sin (中国农业科学), 2008, 41(2): 362–369 (in Chinese with English abstract)
[14]Li G P, Chen P D, Zhang S Z, Wang X E, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. Effects of the 6VS•6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155: 305–313
[15]Payne P I, Jackson E A, Holt L M, Law C N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosome 1A and 1B in wheat. Theor Appl Genet, 1984, 67: 235–243
[16]Wang C-L(王从磊), Ma Q-X(马秋香), Qi Z-J(亓增军), Zhuang L-F(庄丽芳), Feng J-T(冯靖涛), Jiang D(姜东), Hu L(胡琳), Qi X-L(齐学礼), Niu J-S(牛吉山), Feng W-G(冯祎高), Chen P-D(陈佩度). Effects of wheat–Haynaldia villosa T6VS•6AL translocation on grain and flour quality of wheat. J Triticeae Crops (麦类作物学报), 2009, 29(5): 787–792 (in Chinese with English abstract)
[17]Yue H-W(岳鸿伟), Tan W-N(谭维娜), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of post anthesis drought and waterlogging on contents of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin (作物学报), 2007, 33(11): 1845–1849 (in Chinese with English abstract)
[18]Ni Y-L(倪英丽), Wang Z-L(王振林), Li W-Y(李文阳), Yan S-H(闫素辉), Yin Y-P(尹燕枰), Li Y(李勇), Wang P(王平), Chen X-G(陈晓光). Effects of phosphorus fertilizer on accumulation of high molecular weight glutenin subunits and glutenin macropolymer size distribution in wheat grain. Acta Agron Sin (作物学报), 2010, 36(6): 1055–1060 (in Chinese with English abstract)
[19]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats: effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23–41
[20]Yue H W, Jiang D, Dai T B, Qin X D, Jing Q, Cao W X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. J Cereal Sci, 2007, 45: 248–256
[21]Bo Y(伯云), Li H-W(李华伟), Mou H-R(牟会荣), Cai J(蔡剑), Zhou Q(周琴), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东). Effects of shading from jointing stage to maturity stage on high molecular weight glutenin subunits accumulation and glutenin macropolymer content in wheat grain. Sci Agric Sin (中国农业科学), 2009, 42(10): 3451–3458 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!