作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2053-2058.doi: 10.3724/SP.J.1006.2011.02053
张雯婷,孙晓琳,彭芹,张西斌,杨兴洪,孟庆伟,赵世杰*
ZHANG Wen-Ting, SUN Xiao-Lin, PENG Qin, ZHANG Xi-Bin, YANG Xing-Hong, MENG Qing-Wei,ZHAO Shi-Jie*
摘要: 通过测定叶绿体色素含量、叶片气体交换参数、叶绿素荧光及820 nm吸收参数,比较了小偃54 (XY54)和8602及其杂交后代小偃41 (XY41)和小偃81 (XY81)花后旗叶光合特性的差异。在开花期,4个品种(系)的叶绿素和类胡萝卜素的含量不同,基本表现为杂交后代高于双亲,且以XY81最高;8602品系的光合速率(Pn)和羧化效率(CE)最高,XY41品系的气孔导度(Gs)最低,而XY54品种的CE最低。4个小麦品种(系)的胞间CO2浓度(Ci)、K点可变荧光(FK)占FJ–FO荧光振幅的比率(Wk)、光系统II(PSII)最大量子效率(Fv/Fm)、电子传递到QA下游的概率(Ψo)、电子从系统间电子传递体传递给光系统I(PSI)受体侧电子受体的概率(δRo)、820 nm相对可变透射光(ΔI/Io)、PSII的实际光化学效率(ΦPSII)和非光化学猝灭(NPQ)无显著差异。小麦开花后,XY54的叶绿素含量、Pn、Gs、CE、Fv/Fm、δRo及ΔI/Io的下降幅度和Wk的上升幅度显著大于其他3个品系,但Ci、Ψo、ΦPSII和NPQ与其他3个品系没有显著差异。8602和2个杂交后代的上述参数的变化趋势在整个发育期内基本相同。以上结果表明,与XY54相比,XY41和XY81的光合下降幅度较小,可能与它们的光合暗反应能力不同有关,而不是三者的叶绿素含量、气孔导度及光反应的能力不同所造成,杂交后代XY81和XY41可能遗传了8602品系较高的光合暗反应特性。
[1]Sui N(隋娜), Li M(李萌), Tian J-C(田纪春), Meng Q-W(孟庆伟), Zhao S-J(赵世杰). Photosynthetic characteristics of super high yield wheat cultivars at late growth period. Acta Agron Sin (作物学报), 2005, 31(6): 808–814 (in Chinese with English abstract) [2]Sui N(隋娜), Li M(李萌), Han W(韩伟), Zhao S-J(赵世杰), Tian J-C(田纪春). Study on physiological characteristics of flag leaf of super high yield wheat cultivars at late growth period. J Triticeae Crops(麦类作物学报), 2009, 29(6): 1039–1042 (in Chinese with English abstract) [3]Wang S-H(王士红), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X (曹卫星). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. Chin J Appl Ecol (应用生态学报), 2008, 19(6): 1255–1260 (in Chinese with English abstract) [4]Guo C-H(郭翠花), Gao Z-Q(高志强), Miao G-Y(苗果园). Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin (作物学报), 2010, 36(4): 673–679 (in Chinese with English abstract) [5]Li M-S(李茂松), Wang C-Y(王春艳), Song J-Q(宋吉青), Chi Y-G(迟永刚), Wang X-F(王秀芬), Wu Y-F(武永锋). Evolutional trends of leaf stomatal and photosynthetic characteristics in wheat evolutions. Acta Ecol Sin (生态学报), 2008, 28(11): 5385–5391 (in Chinese with English abstract) [6]Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot, 2002, 89: 183–189 [7]Grover A, Mohanty P. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In: Abrol Y P, Mohanty P, Govindjee, eds. Photosynthesis: Photoreactions to Plant Productivity. Dordrecht: Kluwer Academic Publishers, 1992. pp 225–255 [8]Humbeck K, Quast S, Krupinska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ, 1996, 19: 337–344 [9]Wei A-L(魏爱丽), Zhang Y-H(张英华), Huang Q(黄琴), Wang Z-M(王志敏). Dynamic characteristics of photosynthetic rate and carbon assimilation enzyme activities of different green organs in different genotypes of wheat. Acta Agron Sin (作物学报), 2007, 33(9): 1426–1431 (in Chinese with English abstract) [10]Lu C, Lu Q, Zhang J, Kuang T. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. J Exp Bot, 2001, 52: 1805–1810 [11]Lu Q, Lu C, Zhang J, Kuang T. Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. J Plant Physiol, 2002, 159: 1173–1178 [12]Zou T-X(邹铁祥), Dai T-B(戴廷波), Jiang D(姜东), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen and potassium application levels on flag leaf photosynthetic characteristics after anthesis in winter wheat. Acta Agron Sin (作物学报), 2007, 33(10): 1667–1673 (in Chinese with English abstract) [13]Hu Y-J(胡延吉), Zhao T-F(赵檀方). The inheritance and improvment potential of photosynthesis in common wheat. Sci Agric Sin (中国农业科学), 1995, 28(1): 14–21 (in Chinese with English abstract) [14]Hu M-J(胡美君), Wang Y-Q(王义芹), Zhang L(张亮), Wang C(王超), Shen Y-G(沈允钢), Li Z-S(李振声), Li H-W(李宏伟), Tong Y-P(童依平), Li B(李滨). Photosynthetic characteristics of different wheat cultivars and their offspring of hybridization. Acta Agron Sin (作物学报), 2007, 33(11): 1879–1883 (in Chinese with English abstract) [15]Cheng J-F(程建峰), Ma W-M(马为民), Chen G-Y(陈根云), Hu M-J(胡美君), Shen Y-G(沈允钢), Li Z-S(李振声), Tong Y-P(童依平), Li B(李滨), Li H-W(李宏伟). Dynamic changes of photosynthetic characteristics in Xiaoyan 54, Jing 411, and the stable selected superior strains of their hybrid progenies. Acta Agron Sin (作物学报), 2009, 35(6): 1051–1058 (in Chinese with English abstract) [16]Jiang H(江华), Wang H-W(王宏炜), Su J-H(苏吉虎), Shi X-B(石晓冰), Shen Y-G(沈允钢), Li Z-S(李振声), Wei Q-K(魏其克), Zhang X-M(张锡梅), Li B(李滨), Li M(李鸣), Zhang J-J(张吉军). Photosynthesis in offspring of hybridization between two wheat cultivars. Acta Agron Sin (作物学报), 2002, 28(4): 451–454 (in Chinese with English abstract) [17]Schansker G, Srivastava A, Govinjee, Strasser R J. Characterization of the 820-nm transission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796 [18]Li P-M(李鹏民), Gao H-Y(高辉远), Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiol Sin (植物生理与分子生物学学报), 2005, 31(6): 559–566 (in Chinese with English abstract) [19]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Volume 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Berlin: Springer, 2004. pp 321–362 [20]Yusuf M A, Kumar D, Rajwanshi R, Strasser R J, Tsimilli-Michael M, Govindjee, Sarin N B. Overexpression of γ–tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta, 2010, 1797: 1428–1438 [21]Arnon D L. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24: 1–15 [22]Strasser B J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–155 [23]Li P, Cheng L, Gao H, Jiang C, Peng T. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol, 2009, 166: 1607–1615 [24]Shinohara K, Murakami A. Changes in levels of thylakoid components in chloroplasts of pine needles of different ages. Plant Cell Physiol, 1996, 37: 1102–1107 [25]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399 [26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 601–639 [27]Li P M, Cai R G, Gao H Y, Peng T, Wang Z L. Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiol Plant, 2007, 129: 822–829 [28]Collatz G D. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis. Planta, 1977, 134: 127–132 [29]Caemmerer S, von Farquhar G D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, 153: 376–387 [30]Law R D, Crafts-Brandner S J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol, 1999, 120: 173–182 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|