欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2053-2058.doi: 10.3724/SP.J.1006.2011.02053

• 耕作栽培·生理生化 • 上一篇    下一篇

小偃54和8602及其杂交后代小偃41和小偃81花后旗叶光合特性比较

张雯婷,孙晓琳,彭芹,张西斌,杨兴洪,孟庆伟,赵世杰*   

  1. 山东农业大学生命科学学院 / 作物生物学国家重点实验室,山东泰安 271018
  • 收稿日期:2011-02-18 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 赵世杰, E-mail: sjzhao@sdau.edu.cn, Tel: 0538-8249767
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118505)和国家自然科学基金项目(30970854)资助。

Photosynthetic Characteristics after Anthesis in Flag Leaves of Wheat Cultivars Xiaoyan 54 and 8602 and Their Hybrids Xiaoyan 41 and Xiaoyan 81

ZHANG Wen-Ting, SUN Xiao-Lin, PENG Qin, ZHANG Xi-Bin, YANG Xing-Hong, MENG Qing-Wei,ZHAO Shi-Jie*   

  1. College of Life Sciences / State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-02-18 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 赵世杰, E-mail: sjzhao@sdau.edu.cn, Tel: 0538-8249767

摘要: 通过测定叶绿体色素含量、叶片气体交换参数、叶绿素荧光及820 nm吸收参数,比较了小偃54 (XY54)和8602及其杂交后代小偃41 (XY41)和小偃81 (XY81)花后旗叶光合特性的差异。在开花期,4个品种(系)的叶绿素和类胡萝卜素的含量不同,基本表现为杂交后代高于双亲,且以XY81最高;8602品系的光合速率(Pn)和羧化效率(CE)最高,XY41品系的气孔导度(Gs)最低,而XY54品种的CE最低。4个小麦品种(系)的胞间CO2浓度(Ci)、K点可变荧光(FK)占FJFO荧光振幅的比率(Wk)、光系统II(PSII)最大量子效率(Fv/Fm)、电子传递到QA下游的概率(Ψo)、电子从系统间电子传递体传递给光系统I(PSI)受体侧电子受体的概率(δRo)、820 nm相对可变透射光(ΔI/Io)、PSII的实际光化学效率(ΦPSII)和非光化学猝灭(NPQ)无显著差异。小麦开花后,XY54的叶绿素含量、PnGsCEFv/FmδRo及ΔI/Io的下降幅度和Wk的上升幅度显著大于其他3个品系,但CiΨoΦPSIINPQ与其他3个品系没有显著差异。8602和2个杂交后代的上述参数的变化趋势在整个发育期内基本相同。以上结果表明,与XY54相比,XY41和XY81的光合下降幅度较小,可能与它们的光合暗反应能力不同有关,而不是三者的叶绿素含量、气孔导度及光反应的能力不同所造成,杂交后代XY81和XY41可能遗传了8602品系较高的光合暗反应特性。

关键词: 小麦, 光合速率, 色素, 气孔导度, 光合光反应, 光合暗反应

Abstract: Wheat lines Xiaoyan 41 (XY41) and Xiaoyan 81 (XY81) are hybrid progenies of Xiaoyan 54 (XY54) and 8602, which show distinct differences from their parents in photosynthesis characteristics. In this study, the gas exchange, chlorophyll fluorescence, and 820 nm transmission in flag leaves after anthesis were compared between hybrids XY41 and XY81 and parents XY54 and 8602. At anthesis, contents of chlorophyll a, chlorophyll b, and carotenoids were higher in the hybrids than in the parents, especially in XY81. Photosynthetic rate (Pn) and carboxylation efficiency (CE) were the highest in 8602, whereas stomatal conductance (Gs) was the lowest in XY54, followed by XY41. The four cultivars had similar values of intercellular CO2 concentration (Ci), ratio of variable FK to the amplitude FJFO (Wk), maximum quantum yield of PSII (Fv/Fm), efficiency that an electron moves to QA downstream (Ψo), efficiency with which an electron from the intersystem electron carriers moves to electron acceptors in reduced end at the PSI acceptor side (δRo), relative variable transmission at 820 nm (ΔI/Io), actually photochemical efficiency of PSII (ΦPSII), and nonphotochemical quenching (NPQ). After anthesis, the decreases of pigment contents, Pn, CE, Gs, Fv/Fm, δRo, and ΔI/Io and the increase of Wk were larger in XY54 than in other cultivars. No differences were detected in Ci, Ψo, ΦPSII, and NPQ among cultivars, and these parameters varied similarly in 8602 and the hybrids during the whole developmental period tested. Compared with XY 54, XY41, and XY81 had slower decrease in Pn, and this resulted from the difference in dark reaction capacity rather than chlorophyll contents, stomatal conductance, and photosynthetic light reaction capacity. XY41 and XY81 might inherit the high dark reaction capacity from parent 8602.

Key words: Wheat, Photosynthetic rate, Pigments, Stomatal conductance, Light reaction, Dark reaction

[1]Sui N(隋娜), Li M(李萌), Tian J-C(田纪春), Meng Q-W(孟庆伟), Zhao S-J(赵世杰). Photosynthetic characteristics of super high yield wheat cultivars at late growth period. Acta Agron Sin (作物学报), 2005, 31(6): 808–814 (in Chinese with English abstract)
[2]Sui N(隋娜), Li M(李萌), Han W(韩伟), Zhao S-J(赵世杰), Tian J-C(田纪春). Study on physiological characteristics of flag leaf of super high yield wheat cultivars at late growth period. J Triticeae Crops(麦类作物学报), 2009, 29(6): 1039–1042 (in Chinese with English abstract)
[3]Wang S-H(王士红), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X (曹卫星). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. Chin J Appl Ecol (应用生态学报), 2008, 19(6): 1255–1260 (in Chinese with English abstract)
[4]Guo C-H(郭翠花), Gao Z-Q(高志强), Miao G-Y(苗果园). Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin (作物学报), 2010, 36(4): 673–679 (in Chinese with English abstract)
[5]Li M-S(李茂松), Wang C-Y(王春艳), Song J-Q(宋吉青), Chi Y-G(迟永刚), Wang X-F(王秀芬), Wu Y-F(武永锋). Evolutional trends of leaf stomatal and photosynthetic characteristics in wheat evolutions. Acta Ecol Sin (生态学报), 2008, 28(11): 5385–5391 (in Chinese with English abstract)
[6]Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot, 2002, 89: 183–189
[7]Grover A, Mohanty P. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In: Abrol Y P, Mohanty P, Govindjee, eds. Photosynthesis: Photoreactions to Plant Productivity. Dordrecht: Kluwer Academic Publishers, 1992. pp 225–255
[8]Humbeck K, Quast S, Krupinska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ, 1996, 19: 337–344
[9]Wei A-L(魏爱丽), Zhang Y-H(张英华), Huang Q(黄琴), Wang Z-M(王志敏). Dynamic characteristics of photosynthetic rate and carbon assimilation enzyme activities of different green organs in different genotypes of wheat. Acta Agron Sin (作物学报), 2007, 33(9): 1426–1431 (in Chinese with English abstract)
[10]Lu C, Lu Q, Zhang J, Kuang T. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. J Exp Bot, 2001, 52: 1805–1810
[11]Lu Q, Lu C, Zhang J, Kuang T. Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. J Plant Physiol, 2002, 159: 1173–1178
[12]Zou T-X(邹铁祥), Dai T-B(戴廷波), Jiang D(姜东), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen and potassium application levels on flag leaf photosynthetic characteristics after anthesis in winter wheat. Acta Agron Sin (作物学报), 2007, 33(10): 1667–1673 (in Chinese with English abstract)
[13]Hu Y-J(胡延吉), Zhao T-F(赵檀方). The inheritance and improvment potential of photosynthesis in common wheat. Sci Agric Sin (中国农业科学), 1995, 28(1): 14–21 (in Chinese with English abstract)
[14]Hu M-J(胡美君), Wang Y-Q(王义芹), Zhang L(张亮), Wang C(王超), Shen Y-G(沈允钢), Li Z-S(李振声), Li H-W(李宏伟), Tong Y-P(童依平), Li B(李滨). Photosynthetic characteristics of different wheat cultivars and their offspring of hybridization. Acta Agron Sin (作物学报), 2007, 33(11): 1879–1883 (in Chinese with English abstract)
[15]Cheng J-F(程建峰), Ma W-M(马为民), Chen G-Y(陈根云), Hu M-J(胡美君), Shen Y-G(沈允钢), Li Z-S(李振声), Tong Y-P(童依平), Li B(李滨), Li H-W(李宏伟). Dynamic changes of photosynthetic characteristics in Xiaoyan 54, Jing 411, and the stable selected superior strains of their hybrid progenies. Acta Agron Sin (作物学报), 2009, 35(6): 1051–1058 (in Chinese with English abstract)
[16]Jiang H(江华), Wang H-W(王宏炜), Su J-H(苏吉虎), Shi X-B(石晓冰), Shen Y-G(沈允钢), Li Z-S(李振声), Wei Q-K(魏其克), Zhang X-M(张锡梅), Li B(李滨), Li M(李鸣), Zhang J-J(张吉军). Photosynthesis in offspring of hybridization between two wheat cultivars. Acta Agron Sin (作物学报), 2002, 28(4): 451–454 (in Chinese with English abstract)
[17]Schansker G, Srivastava A, Govinjee, Strasser R J. Characterization of the 820-nm transission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796
[18]Li P-M(李鹏民), Gao H-Y(高辉远), Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiol Sin (植物生理与分子生物学学报), 2005, 31(6): 559–566 (in Chinese with English abstract)
[19]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Volume 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Berlin: Springer, 2004. pp 321–362
[20]Yusuf M A, Kumar D, Rajwanshi R, Strasser R J, Tsimilli-Michael M, Govindjee, Sarin N B. Overexpression of γ–tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta, 2010, 1797: 1428–1438
[21]Arnon D L. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24: 1–15
[22]Strasser B J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–155
[23]Li P, Cheng L, Gao H, Jiang C, Peng T. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol, 2009, 166: 1607–1615
[24]Shinohara K, Murakami A. Changes in levels of thylakoid components in chloroplasts of pine needles of different ages. Plant Cell Physiol, 1996, 37: 1102–1107
[25]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399
[26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 601–639
[27]Li P M, Cai R G, Gao H Y, Peng T, Wang Z L. Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiol Plant, 2007, 129: 822–829
[28]Collatz G D. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis. Planta, 1977, 134: 127–132
[29]Caemmerer S, von Farquhar G D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, 153: 376–387
[30]Law R D, Crafts-Brandner S J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol, 1999, 120: 173–182
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!