欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2130-2135.doi: 10.3724/SP.J.1006.2011.02130

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用分子标记定位普通菜豆抗炭疽病基因

陈明丽1,王兰芬1,王晓鸣1,张晓艳2,王述民1,*   

  1. 1江苏沿江地区农业科学研究所, 江苏如皋 226541; 2扬州大学作物遗传生理省级重点实验室, 江苏扬州 225009
  • 收稿日期:2011-04-19 修回日期:2011-06-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 王述民, E-mail: smwang@mail.caas.net.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD13B05)和农业部作物种质资源保护与利用专项资助。

Mapping of Gene Conferring Resistance to Anthracnose in Common Bean (Phaseolus vulgaris L.) by Molecular Makers

CHEN Ming-Li1, WANG Lan-Fen1, WANG Xiao-Ming1, ZHANG Xiao-Yan2,WANG Shu-Min1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
  • Received:2011-04-19 Revised:2011-06-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 王述民, E-mail: smwang@mail.caas.net.cn

摘要: 为了定位中国普通菜豆的抗炭疽病基因, 选取抗炭疽病地方品种红芸豆(国家库编号F2322)与高感菜豆品种京豆(国家库编号F0777)配制杂交组合, 构建F2抗感分离群体和F2:3家系, 用菜豆炭疽菌81号生理小种鉴定抗病性并分析遗传性。结果表明, 红芸豆对菜豆炭疽菌81号小种的抗性是由一显性单基因控制的, 暂将该基因命名为Co-F2322。用分离群体分组分析法(BSA)和SSR、CAPs分子标记技术, 将该基因定位在B1连锁群上, 利用软件Mapmaker 3.0和Mapchart 3.0计算标记与目的基因间的遗传距离, 检测到3个SSR标记BMc32、C871、Pvm98和2个CAPs标记g1224、g683与抗炭疽病基因连锁, 遗传距离分别为26.06、3.58、13.56、3.81和12.75 cM。

关键词: 玉米自交系, 粗缩病, 抗性鉴定, 遗传多样性

Abstract: Tolocate gene conferring resistance to anthracnose caused by pathogenic fugus (Colletotrichum lindemuthianum) from Chinese common bean, we established F2 plants and F3 families derived from a cross between red common bean cultivar F2322 (resistant to race 81) and Jing common bean cultivar F0777 (susceptible to race 81), identified resistance, and did genetic analysis. The results showed that red bean carried a single dominant gene for resistance to anthracnose, designated as Co-F2322 tentatively. Molecular genetic linkage map was constructed withMapmaker 3.0 and Mapchart 3.0. Three SSR markers (BMc32, C871, Pvm98) and two CAPs makers (g1224 and g683) that linked to the resistance gene were mapped on B1 linkage group of common bean with the distance of 26.06, 3.58, 13.56, 3.81 and 12.75 cM, respectively.

Key words: Common bean, Anthracnose, Bulked segregant analysis (BSA), Anthracnose resistant gene, Molecular marker

[1]Broughton W J, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.)—model food legumes. Plant Soil, 2003, 252: 55–128
[2]Wang X-M(王晓鸣), Li Y-L(李怡琳), Li S-Y(李淑英). Study on germplasm of Phaseouus vulgaris L. resistance to Anthracnose. Crop Genet Resour (作物品种资源), 1989, (2): 18–19 (in Chinese)
[3]Rodríguez-Guerra R, Ramírez-Rueda M T, Martínez de la Vega O, Simpson J. Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathol, 2003, 52: 228–235
[4]Pastor-Corrales M A. Estandarización de variedades diferenciales y designación de razas de Colletotrichum lindemuthianum. Phytopathology, 1991, 81: 694
[5]Wang K(王坤), Wang X-M(王晓鸣), Zhu Z-D(朱振东), Zhang X-Y(张晓艳), Wang S-M(王述民). Identification of Colletotrichum lindemuthianum races and bean germplasm evaluation for anthracnose resistance. Plant Genet Resour (植物遗传资源学报), 2008, 9(2): 168–172 (in Chinese with English abstract)
[6]Goncalves-Vidigal M C, Vidigal Filho P S, Medeiros A F. Common bean landrace Jalo Listras Pretas is the source of a new Andean anthracnose resistance gene. Crop Sci, 2009, 49: 133–138
[7]Kelly J D, Vallejo V A. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hort Sci, 2004, 39: 1196–1207
[8]Goncalves-Vidigal M C, Lacanallo G F, Vidigal Filho P S. A new gene conferring resistance to anthracnose in common bean (Phaseolus vulgaris L.) cultivar ‘Jalo Vermelho’. Plant Breed, 2008, 127: 592–596
[9]Wu Q-A(吴全安). Identification of crops germplasm resources resistant to diseases and insect pests. Beijing: Agriculture Press, 1991. pp 60–61 (in Chinese)
[10]Afanador L, Hadley S, Kelly J D. Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Annu Rep Bean Improv Coop, 1993, 36: 10–11
[11]Michelmore R M, Paran I, Kesseli R V. Identification of marker linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[12]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural population. Genomics, 1987, 1: 174–181
[13]Kosambi D D. The estimation of map distances from recombina-tion values. Ann Eugen, 1944, 12: 172–175
[14]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: A Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–21 (in Chinese with an English abstract)
[15]Wang K(王坤), Wang X-M(王晓鸣), Zhu Z-D(朱振东), Wang S-M(王述民). Mapping of a novel anthracnose resistance gene using SSR markers in common bean (Phaseolus vulgaris L.). Acta Agron Sin (作物学报), 2009, 35(3): 432–437 (in Chinese with English abstract)
[16]Zhao X-Y(赵晓彦), Wang X-M(王晓鸣), Wang S-M(王述民). Identification of anthracnose resistant genes based on SCAR markers in common bean (Phaseolus vulgaris L.). Acta Agron Sin (作物学报), 2007, 33(11): 1815–1821 (in Chinese with English abstract)
[17]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[18]Mackay I J, Caligari P D S. Efficiencies of F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci, 2000, 40: 626–630
[19]Liao Y(廖毅), Sun B-J(孙保娟), Sun G-W(孙光闻), Liu H-C(刘厚诚), Chen R-Y(陈日远). The application and key problems of bulked segregant analysis on the research of molecular marker in crop. Mol Plant Breed (植物分子育种), 2009, 7(1): 162–168 (in Chinese with English abstract)
[20]Gonçalves-Vidigal M C, Cruz A S, Garcia A. Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet, 2011, 122: 893–903
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[7] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[8] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[9] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[10] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[11] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[12] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[13] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[14] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[15] 杨洋,陈国康,郭成,张炜,孙素丽,王晓鸣,朱振东,段灿星. 玉米种质资源抗腐霉茎腐病鉴定[J]. 作物学报, 2018, 44(8): 1256-1260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!