作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2136-2144.doi: 10.3724/SP.J.1006.2011.02136
杨昆1,张贺翠1,**,Richard CONVERSE2,朱利泉1,*,杨永军1,薛丽琰1,罗兵1,常登龙1,高启国2,王小佳2
YANG Kun1, ZHANG He-Cui1, Richard CONVERSE2, ZHU Li-Quan1,*, YANG Yong-Jun1, XUE Li-Yan1, LUO Bing1,CHANG Deng-Long1,GAO Qi-Guo2,WANG Xiao-Jia2
摘要: 从甘蓝型油菜与羽衣甘蓝柱头中克隆出ARC1与EXO70A1基因的编码区, 序列分析显示推导的甘蓝型油菜ARC1比羽衣甘蓝ARC1少编码2个氨基酸, ARC1蛋白在羽衣甘蓝与甘蓝型油菜中存在45个氨基酸的差异, 其序列相似度与一致性分别达到95.9%和93.9%; 推导的EXO70A1在两种植物中仅有6个氨基酸的差异, 其序列相似度与一致性分别达到99.4%和98.9%; EXO70A1蛋白在种内和物种间都保持着高度的保守性, 其保守的程度高于ARC1。应用酵母双杂交系统检测两种蛋白质的相互作用, 发现: 在二倍体酵母细胞中, 全长的ARC1与EXO70A1之间存在较强的相互作用, 能激活4个报告基因(ADE2、HIS3、AUR1-C和MEL1)的表达; 去除C-端(包括臂重复区) 316个氨基酸残基后的ARC1N与EXO70A1之间表现出较弱的相互作用, 只能激活3个报告基因(ADE2、AUR1-C和MEL1)的表达, 表明ARC1的臂重复区可能并不位于ARC1与EXO70A1的互作界面的核心区段, ARC1的N-端结构域对ARC1-EXO70A1互作起关键作用; 同时发现不同ARC1-EXO70A1组合的互作强度相当, 其可能原因是ARC1和EXO70A1在甘蓝与甘蓝型油菜中存在的这些序列差异并未影响ARC1- EXO70A1互作界面的构象。
[1]McCubbin A G, Kao T H. Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell DevBiol, 2000, 16: 333–364 [2]Wheeler M J, Vatovec S, Franklin-Tong V E. The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. J Exp Bot, 2010, 61: 2015–2025 [3]Mattison O, Knox R B, Heslopha J, Heslopha Y. Protein pellicle of stigmatic papillae as a probable recognition site in incompatible reactions. Nature, 1974, 247: 298–300 [4]Stead A D, Roberts I N, Dickinson H G. Pollen-stigma interaction in Brassica oleracea: the role of stigmatic proteins in pollen grain adhesion. J Cell Sci, 1980, 42: 417–423 [5]Didier C, Mark C J, Christian D, Thierry G. The S-locus receptor kinase inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 4l0: 220–223 [6]Rea A C, Nasrallah J B. Self-incompatibility systems: barriers to self-fertilization in flowering plants. Intl J Dev Biol, 2008, 52: 627–636 [7]Murase K, Shiba H, Iwano M, Che F S, Watanabe M, Isogal A, Takayama S. A Membrane-anchored protein kinase involved in Brassica self- incompatibility signaling. Science, 2004, 303: 1516–1519 [8]Goring D R, Walker J C. Self-rejection—a new kinase connection. Science, 2004, 303: 1474–1475 [9]Kakita M, Shimosato H, Murasea K, Isogai A, Takayama S. Direct interaction between S-locus receptor kinase and M-locus protein kinase involved in Brassica self-incompatibility signaling. Plant Biotechnol, 2007, 24: 185–190 [10]Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19: 3961–3973 [11]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898 [12]Samuel M A, Yee D, Haasen K E, Goring D R. ‘Self’ pollen rejection through the intersection of two cellular pathways in the Brassicaceae: self-incompatibility and the compatible pollen response. Self-incompatibility Flower Plants, 2008, 173–191 [13]Liu P, Sherman-Broyles S, Nasralllah M E, Nasrallah J B, A cryptic modifier causing transient self-incompatibility in Arabidopsis thaliana. Curr Biol, 2007, 17: 734–740 [14]Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2671 [15]Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6: 354–358 [16]Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60: 1109–1121 [17]Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci, 1998, 95: 382–387 [18]Mazzurco M, Sulaman W, Elina H, Cock J M, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol, 2001, 45: 365–376 [19]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che Fang-Sik, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell, 2007, 19: 107–117 [20]Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340: 245–246 [21]Aravind L, Koonin E V. The U box is a modified RING finger: a common domain in ubiquitination. Curr Biol, 2000, 10: R132–R134 [22]Patterson C. A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE, 2002, 116: PE4 |
[1] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[2] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[3] | 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146. |
[4] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[5] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
[6] | 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39. |
[7] | 王玉奎,张贺翠,白晓璟,廉小平,施松梅,刘倩莹,左同鸿,朱利泉. 甘蓝BoPINs家族基因的特征和表达分析[J]. 作物学报, 2019, 45(8): 1270-1278. |
[8] | 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783. |
[9] | 罗绍兰,廉小平,蒲敏,白晓璟,王玉奎,曾静,施松梅,张贺翠,朱利泉. 甘蓝锌指蛋白转录因子BoC2H2的克隆、定位与表达分析[J]. 作物学报, 2018, 44(11): 1650-1660. |
[10] | 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428. |
[11] | 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539. |
[12] | 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063. |
[13] | 高启国,刘豫东,蒲全明,张林成,朱利泉,王小佳. 甘蓝BoExo70A1与BoSEC3、BoExo84蛋白相互作用的酵母双杂交检测[J]. 作物学报, 2015, 41(06): 972-978. |
[14] | 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766. |
[15] | 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019. |
|