欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2136-2144.doi: 10.3724/SP.J.1006.2011.02136

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用

杨昆1,张贺翠1,**,Richard CONVERSE2,朱利泉1,*,杨永军1,薛丽琰1,罗兵1,常登龙1,高启国2,王小佳2   

  1. 1 西南大学农学与生物科技学院, 重庆 400716; 2 Department of Biology, University of Cincinnati, Cincinnati OH 45267-0524; 3 西南大学重庆市蔬菜重点实验室, 重庆 400716
  • 收稿日期:2011-04-23 修回日期:2011-07-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 朱利泉, E-mail: zhuliquan@swu.edu.cn, Tel: 023-68250794
  • 基金资助:

    本研究由中央高校基本科研业务费专项资金(XDJK2009C109)和国家自然科学基金项目(30971849)资助。

Interaction between Two Self-incompatible Signal Elements, EXO70A1 and ARC1

YANG Kun1, ZHANG He-Cui1, Richard CONVERSE2, ZHU Li-Quan1,*, YANG Yong-Jun1, XUE Li-Yan1, LUO Bing1,CHANG Deng-Long1,GAO Qi-Guo2,WANG Xiao-Jia2   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; 2 Department of Biology, University of Cincinnati, Cincinnati OH 45267-0524, USA; 3 Key Laboratory in Olericulture of Chongqing, Southwest University, Chongqing 400716, China
  • Received:2011-04-23 Revised:2011-07-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 朱利泉, E-mail: zhuliquan@swu.edu.cn, Tel: 023-68250794

摘要: 从甘蓝型油菜与羽衣甘蓝柱头中克隆出ARC1EXO70A1基因的编码区, 序列分析显示推导的甘蓝型油菜ARC1比羽衣甘蓝ARC1少编码2个氨基酸, ARC1蛋白在羽衣甘蓝与甘蓝型油菜中存在45个氨基酸的差异, 其序列相似度与一致性分别达到95.9%和93.9%; 推导的EXO70A1在两种植物中仅有6个氨基酸的差异, 其序列相似度与一致性分别达到99.4%和98.9%; EXO70A1蛋白在种内和物种间都保持着高度的保守性, 其保守的程度高于ARC1。应用酵母双杂交系统检测两种蛋白质的相互作用, 发现: 在二倍体酵母细胞中, 全长的ARC1与EXO70A1之间存在较强的相互作用, 能激活4个报告基因(ADE2HIS3AUR1-CMEL1)的表达; 去除C-端(包括臂重复区) 316个氨基酸残基后的ARC1N与EXO70A1之间表现出较弱的相互作用, 只能激活3个报告基因(ADE2AUR1-CMEL1)的表达, 表明ARC1的臂重复区可能并不位于ARC1与EXO70A1的互作界面的核心区段, ARC1的N-端结构域对ARC1-EXO70A1互作起关键作用; 同时发现不同ARC1-EXO70A1组合的互作强度相当, 其可能原因是ARC1和EXO70A1在甘蓝与甘蓝型油菜中存在的这些序列差异并未影响ARC1- EXO70A1互作界面的构象。

关键词: 自交不亲和, 信号元件, 蛋白质相互作用, 酵母双杂交

Abstract: ARC1 and EXO70A1 are important signal elements of self-incompatibility in Brassica. To identify the interaction of ARC1-EXO70A1 during the course of SI, we cloned the coding sequences of ARC1 and EXO70A1 from Brassica napus L.and Brassica oleracea L. var. acephala. Sequence analysis showed that ARC1 consisted of 663 amino acids in Brassica oleracea and 661amino acids in Brassica napus, and there existed 45 amino acids difference between them. Sequence alignment showed that similarity positions and identity positions reached 95.9% and 93.9% between BoARC1 and BnARC1, whereas there existed only six-amino-acid difference between BoEXO70A1 and BnEXO70A1. The Similarity positions and identity positions reached 99.4% and 98.9% between BoEXO70A1 and BnEXO70A1 respectively. The homology of EXO70A1 was higher than that of ARC1. Yeast two-hybrid results indicated that the strong interaction existed between ARC1 and EXO70A1, and it could activate the expression of four reporter genes (ADE2, HIS3, AUR1-C,and MEL1) in diploid yeasts. However, low interaction existed between EXO70A1 and ARC1N with 316 amino acids deleted from C-terminal, and it only activated the expression of three reporter genes (ADE2, AUR1-C, and MEL1). This provides an insight that the interface of interaction between ARC1 and EXO70A1 may not consist of the domains of arm repeats in ARC1. N-terminal domains of ARC1 play an essential role in the interaction of ARC1-EXO70A1. The influences of the differences in amino-acid composition between BoARC1 and BnARC1 on the interaction of ARC1-EXO70A1 couldn’t be detected by means of yeast two-hybrid system, which probably resulted from that the binding interface between ARC1 and EXO70A1 was not altered by sequence difference of two proteins in two Brassica species.

Key words: Self-incompatibility, Signal element, Protein interaction, Yeast two-hybrid

[1]McCubbin A G, Kao T H. Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell DevBiol, 2000, 16: 333–364
[2]Wheeler M J, Vatovec S, Franklin-Tong V E. The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. J Exp Bot, 2010, 61: 2015–2025
[3]Mattison O, Knox R B, Heslopha J, Heslopha Y. Protein pellicle of stigmatic papillae as a probable recognition site in incompatible reactions. Nature, 1974, 247: 298–300
[4]Stead A D, Roberts I N, Dickinson H G. Pollen-stigma interaction in Brassica oleracea: the role of stigmatic proteins in pollen grain adhesion. J Cell Sci, 1980, 42: 417–423
[5]Didier C, Mark C J, Christian D, Thierry G. The S-locus receptor kinase inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 4l0: 220–223
[6]Rea A C, Nasrallah J B. Self-incompatibility systems: barriers to self-fertilization in flowering plants. Intl J Dev Biol, 2008, 52: 627–636
[7]Murase K, Shiba H, Iwano M, Che F S, Watanabe M, Isogal A, Takayama S. A Membrane-anchored protein kinase involved in Brassica self- incompatibility signaling. Science, 2004, 303: 1516–1519
[8]Goring D R, Walker J C. Self-rejection—a new kinase connection. Science, 2004, 303: 1474–1475
[9]Kakita M, Shimosato H, Murasea K, Isogai A, Takayama S. Direct interaction between S-locus receptor kinase and M-locus protein kinase involved in Brassica self-incompatibility signaling. Plant Biotechnol, 2007, 24: 185–190
[10]Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19: 3961–3973
[11]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898
[12]Samuel M A, Yee D, Haasen K E, Goring D R. ‘Self’ pollen rejection through the intersection of two cellular pathways in the Brassicaceae: self-incompatibility and the compatible pollen response. Self-incompatibility Flower Plants, 2008, 173–191
[13]Liu P, Sherman-Broyles S, Nasralllah M E, Nasrallah J B, A cryptic modifier causing transient self-incompatibility in Arabidopsis thaliana. Curr Biol, 2007, 17: 734–740
[14]Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2671
[15]Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6: 354–358
[16]Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60: 1109–1121
[17]Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci, 1998, 95: 382–387
[18]Mazzurco M, Sulaman W, Elina H, Cock J M, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol, 2001, 45: 365–376
[19]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che Fang-Sik, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell, 2007, 19: 107–117
[20]Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340: 245–246
[21]Aravind L, Koonin E V. The U box is a modified RING finger: a common domain in ubiquitination. Curr Biol, 2000, 10: R132–R134
[22]Patterson C. A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE, 2002, 116: PE4
[1] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[2] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[3] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[4] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[5] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[6] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[7] 王玉奎,张贺翠,白晓璟,廉小平,施松梅,刘倩莹,左同鸿,朱利泉. 甘蓝BoPINs家族基因的特征和表达分析[J]. 作物学报, 2019, 45(8): 1270-1278.
[8] 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783.
[9] 罗绍兰,廉小平,蒲敏,白晓璟,王玉奎,曾静,施松梅,张贺翠,朱利泉. 甘蓝锌指蛋白转录因子BoC2H2的克隆、定位与表达分析[J]. 作物学报, 2018, 44(11): 1650-1660.
[10] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[11] 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539.
[12] 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063.
[13] 高启国,刘豫东,蒲全明,张林成,朱利泉,王小佳. 甘蓝BoExo70A1与BoSEC3、BoExo84蛋白相互作用的酵母双杂交检测[J]. 作物学报, 2015, 41(06): 972-978.
[14] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[15] 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!