欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2145-2151.doi: 10.3724/SP.J.1006.2011.02145

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦品种中梁21抗条锈病基因遗传分析与SSR标记定位

马东方1,王海鸽1,唐明双1,袁喜丽1,白耀博1,周新力1,宋建荣2,井金学1,*   

  1. 1 西北农林科技大学植物保护学院 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100; 2 甘肃省天水市农科所, 甘肃天水 741001
  • 收稿日期:2011-07-06 修回日期:2011-09-16 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 基金资助:

    本研究由教育部高等学校学科创新引智计划(111计划)项目(B07049)和国家公益性(农业)行业计划专项(2009003035)资助。

Genetic Analysis and Molecular Mapping of Stripe Rust Resistance Gene in Wheat Cultivar Zhongliang 21

MA Dong-Fang1,WANG Hai-Ge1,TANG Ming-Shuang1,YUAN Xi-Li1,BAI Yao-Bo1,ZHOU Xin-Li1,SONG Jian-Rong2,JING Jin-Xue1,*   

  1. 1 College of Plant Protection / State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China; 2 Tianshui Municipal Institute of Agricultural Science of Gansu Province, Tianshui 741001, China
  • Received:2011-07-06 Revised:2011-09-16 Published:2011-12-12 Published online:2011-09-29

摘要: 用7个我国当前流行的条锈菌生理小种评价中梁21的苗期条锈抗性,结果表明该品种对我国优势流行小种具有良好的抗性。采用CYR30小种对中梁21与铭贤169杂交的F1、BC1、F2及F3代群体进行遗传分析,并利用SSR分子标记进行遗传作图,发现中梁21对CYR30的抗性由1个显性基因控制,暂命名为Yrzhong21。该基因与位于小麦5AL染色体上的10个SSR位点Xgwm186Xbarc165Xwmc795Xbarc40Xgwm156Xgwm617Xwmc415Xbarc151Xwmc338Xgwm666连锁,其中最近的侧翼位点为Xgwm186Xbarc165,其遗传距离分别是7.5 cM和2.7 cM。系谱分析及结合分子标记结果表明,该基因可能来自Ciemenp。与已定位于5A染色体上的抗条锈病基因的比较表明,Yrzhong21可能是一个抗条锈病的新基因。用标记Xgwm186Xbarc165检测中梁系列品种,其中仅17%扩增到与中梁21相同的位点,表明该基因在抗条锈病育种中可能有很大的应用潜力。

关键词: 中梁21, 小麦条锈病, 抗病基因, 遗传分析, 分子标记

Abstract: Wheat cultivar Zhongliang 21 displayed resistance to epidemic yellow rust races in China when tested with seven races of Puccinia striiformis f. sp. tritici (Pst). To use the elite resistance to Pst in wheat breeding, we identified the resistance gene (s) in Zhongliang 21 by means of phenotypic evaluation and molecular marker technique. Seedlings of the F1, F2, and BC1 generations from the cross between Zhongliang 21 (resistant) and Mingxian 169 (susceptible), as well as the parents, were tested with Pst race CYR30. The results showed that the stripe rust resistance in Zhongliang 21 was conferred by a single dominant gene, which was designated Yrzhong21, temporarily. Ten simple sequence repeat (SSR) markers located on chromosome arm 5AL, Xgwm186, Xbarc165, Xwmc795, Xbarc40, Xgwm156, Xgwm617, Xwmc415, Xbarc151, Xwmc338, and Xgwm666, were linked to Yrzhong21 with the nearest flanking markers of Xgwm186 and Xbarc165. The genetic distances were 7.5 cM to Xgwm186 and 2.7 cM to Xbarc165. Based on chromosomal location, reactions to various pathotypes andpedigree analysis, we deduced Yrzhong21 is a novel resistance gene to stripe rust. Eighteen cultivars (lines) of Zhongliang series were tested with the flanking markers Xgwm186 and Xbarc165, and only 17% showed the same banding pattern as that in Zhongliang 21. This result suggested that 17% of Zhongliang cultivars (lines) might carry Yrzhong21, indicating that this resistance gene has a potential application in wheat breeding program for strip rust resistance.

Key words: Zhongliang 21, Wheat stripe rust, Resistance gene, Genetic analysis, Molecular mapping

[1]Line R F. Stripe rust of wheat and barley in North America: A retrospective historical review. Annu Rev Phytopathol, 2002, 40: 75–118
[2]Li Z-Q(李振岐), Zeng S-M(曾士迈). Wheat Rust in China (中国小麦锈病). Beijing: China Agriculture Press, 2002. pp 1–3 (in Chinese)
[3]Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Yuan X Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896–904
[4]Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G,Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896–904
[5]Li Q, Chen X M, Wang M N, Jing J X. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor Appl Genet, 2011, 122: 189–197
[6]Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh D, Singh R P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011, 122: 239–249
[7]Bansal U K, Forrest K L, Hayden M, Miah H, Singh D, Bariana H S. Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet, 2011, 122: 1461–1466
[8]Lowe L, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143–157
[9]Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21–30
[10]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller1 B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1263
[11]Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323: 1357–1360
[12]Uauy C, Brevis J C, Chen X M, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet, 2005, 112: 97–105
[13]Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P, Xia X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2006, 112: 1098–1103
[14]Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434–1440
[15]Yang M-N(杨敏娜), Xu Z-B(徐智斌), Wang M-N(王美南), Song J-R(宋建荣), Jing J-X(井金学), Li Z-Q(李振岐). Genetic analysis and molecular mapping of stripe rust resistance gene in wheat cultivar Zhongliang 22. Acta Agron Sin (作物学报), 2008, 34(7): 1280–1284 (in Chinese with English abstract)
[16]Xu Z-Q(徐中青), Zhang S-Y(张书英), Wang R(王睿), Wang W-L(王文立), Zhou X-L(周新力), Yin J-L(尹军良), Chen J(陈洁), Jing J-X(井金学). Genetic analysis and molecular mapping of stripe rust resistance gene in wheat line M8003-5. Acta Agron Sin (作物学报), 2010, 36(12): 2116–2123 (in Chinese with English abstract)
[17]Liu X-K(刘孝坤). A preliminary study on the inheritance of resistance to stripe rust in wheat. Acta Phytophyl Sin (植物保护学报), 1988, 15(1): 33–39 (in Chinese with English abstract)
[18]He J-B(何家泌). Inheritance of Resistance to Plant Disease (病害抗病遗传). Beijing: China Agriculture Press, 1994. pp 215–222 (in Chinese)
[19]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76
[20]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[21]Röder M S, Korzun V, Wendehake K, Plaschke J. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023
[22]Pestsovca E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697
[23]Song Q J, Shi J R, Sigh S, Fickus E W. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550–560
[24]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)
[25]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114
[26]Bariana H S, Parry N, Barclay I R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet, 2006, 112: 1143–1148
[27]Li Z-Q(李振岐). The variation of wheat variety resistance to stripe rust in China and the way of its solution. Sci Agric Sin (中国农业科学), 1980, 13(3): 72–77 (in Chinese with English abstract)
[28]Wan A-M(万安民), Niu Y-C(牛永春), Wu L-R(吴立人), Yuan W-H(袁文焕), Li G-B(李高宝), Jia Q-Z(贾秋珍), Jin S-L(金社林), Yang J-X(杨家秀), Li Y-F(李艳芳), Bi Y-Q(毕云青). Physiologic specialization of stripe rust of wheat in China during 1991–1996. Acta Phytopathol Sin (植物病理学报), 1999, 29(1): 15–20 (in Chinese with English abstract)
[29]Song J-R(宋建荣), Yue W-Y(岳维云), Lü L-L(吕莉莉), Zhang Y-H(张耀辉), Wang Xi-A(王希恩), Liu H-Y(刘鸿燕), Wen H-C(温宏昌), Wang N(王娜). Breeding report of winter wheat line Zhongliang 969 with drought resistance and high yield. Gansu Agric Sci & Technol (甘肃农业科技), 2008, (1): 3–5 (in Chinese with English abstract)
[30]Liao W-X(廖文孝). Breeding report of winter wheat line Zhongliang 17 and outlook. Tritical Crops (麦类作物), 1997, 17(5): 21–22 (in Chinese)
[31]Lü L-L(吕莉莉), Song J-R(宋建荣), Yue W-Y(岳维云), Zhang Y-H(张耀辉), Liu H-Y(刘鸿燕), Wang N(王娜). Breeding report of winter wheat line Zhongliang 26 with rust resistance and high yield. J Triticeae Crops (麦类作物学报), 2009, 29(2): 365 (in Chinese)
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[6] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[7] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[8] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[9] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[10] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[11] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[12] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[13] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[14] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[15] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!