欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 50-54.doi: 10.3724/SP.J.1006.2012.00050

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

构建全基因组导入系中BC1F1群体大小的影响因素研究

闫龙1,2,刘慧勇1,2,李英慧1,张孟臣2,邱丽娟1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物种质资源与遗传改良国家重大工程, 北京 100081; 2河北省农林科学院粮油作物研究所 / 大豆改良中心石家庄分中心 / 作物遗传育种重点实验室,河北石家庄 050031
  • 收稿日期:2011-03-10 修回日期:2011-06-13 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: QIU Li-Juan, E-mail: qiu_lijuan@263.net
  • 基金资助:

    The Research Supported by State Key Basic Research and Development Plan of China (973 program) (2004CB117203) and International Science and Technology Cooperation and Exchanges Projects (2008DFA30550).

Factors Affected BC1F1 Size for Development of Genome-wide Introgression Lines

YAN Long1,2,LIU Hui-Yong1,2,LI Ying-Hui1,ZHANG Meng-Chen2,QIU Li-Juan1,*   

  1. 1 National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Shijiazhuang Branch Center of National Center for Soybean Improvement / Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031, China
  • Received:2011-03-10 Revised:2011-06-13 Published:2012-01-12 Published online:2011-11-07
  • Contact: QIU Li-Juan, E-mail: qiu_lijuan@263.net
  • Supported by:

    The Research Supported by State Key Basic Research and Development Plan of China (973 program) (2004CB117203) and International Science and Technology Cooperation and Exchanges Projects (2008DFA30550).

摘要: 全基因组导入系是遗传和育种研究的重要材料。导入系经受体亲本和供体亲本间连续杂交、回交构建而成, BC1F1群体大小是获得理想导入系群体的关键参数。然而, 各物种所需要的最小群体尚不清楚, 并且难以通过试验确定。本研究通过编写程序, 模拟减数分裂时的重组过程研究适宜的群体大小, 并通过数学运算和试验验证程序的可靠性。结果表明, 编程模拟与数学计算和试验结果一致。BC1F1群体大小与连锁群数目、连锁群长度和基因密度之间均为正相关。当模拟连锁群从5个增加到40个时, 群体大小需要由6.06增加到9.49; 当模拟连锁群长度从80 cM增加到200 cM时, 需要的群体大小从7.14增加到8.64; 当模拟基因密度从每基因20 cM缩小到每基因5 cM时, 群体大小从7.65增加到8.22。为测试该程序的应用范围, 对水稻、小麦、玉米、大豆等主要作物进行了BC1F1群体大小模拟,在保证95%的概率覆盖全基因组条件下, 水稻需要的群体最少, 为12个个体, 小麦和大豆均需13个个体, 玉米需要的个体数最多, 为14~15个。

关键词: 导入系, 群体大小, 模拟

Abstract: Introgression lines are important genetic materials for genetics study and breeding. Development of those lines involves cross and backcross processes between recipient and donor parents. The population size of BC1F1 is a critical parameter for fully covering donor genome and successfully obtaining desired introgression lines. However, the minimum sufficient number of BC1F1 plants is unknown for each species and can not be obtained experimentally. We have developed a computer program by simulating the recombination process during meiosis to define the ideal BC1F1 population size. The reliability of the program was confirmed by mathematics and experimental data. Three factors including linkage groups number, linkage group length and gene density were analyzed and all of them had positive relation with the BC1F1 population size. The population size increased from 6.06 to 9.49 when the linkage number increased from 5 to 40. The population size was 7.14 when the linkage group length was 80 cM, while it became 8.64 when the length was 200 cM. The population size was 7.65 with the density of 20 cM per gene and 8.22 with 10 cM per gene. The BC1F1 population sizes of rice, wheat, maize and soybean were predicted to be 12, 13, 14–15, and 13 by the program with 95% confident level.

Key words: Introgression lines, Population size, Simulate

[1]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630
[2]Phadnis N, Orr H A. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science, 2009, 323: 376–378
[3]Wan X Y, Wan J M, Su C C, Wang C M, Shen W B, Li J M, Wang H L, Jiang L, Liu S J, Chen L M. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet, 2004, 110: 71–79
[4]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112: 570–580
[5]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476–484
[6]Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang Z W, Lin H, Ono N, Uga Y, Yano M. Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona Bokra’ and japonica recipient cultivar ‘Koshihikari’. Breed Sci, 2007, 57: 257–261
[7]Cheema K K, Bains N S, Mangat G S, Das A, Vikal Y, Brar D S, Khush G S, Singh K. Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica, 2008, 160:401–409
[8]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360–1373
[9]Röder M S, Huang X Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genom, 2008, 8: 79–86
[10]Korff M, Wang H, Léon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745
[11]Schmalenbach I, Léon J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet, 2009, 118: 483–497
[12]Schmalenbach I, Körber N, Pillen K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet, 2008, 117: 1093–1106
[13]Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in Lycopersicon esculentum: a tool for fine mapping of genes. Euphytica, 1994, 79: 175–179
[14]Jeuken M J W, Lindhout P. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet, 2004, 109: 394–401
[15]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Pey J D, Vijayakumar C H M, Maghirang R. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33–52
[16]Frisch M, Bohn M, Melchinger A E. PLABSIM: software for simulation of marker-assisted backcrossing. J Hered, 2000, 91: 86–87
[17]Frisch M, Bohn M, Melchinger A E. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci, 1999, 39: 1295–1301
[18]Frisch M, Melchinger A E. Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci, 2001 41: 1716–1725
[19]Ribaut J M, Jiang C, Hoisington D. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci, 2002, 42: 557–565
[20]Susic Z. Experimental and simulation studies on introgressing genomic segments from exotic into elite germplasm of rye (Secale cereale L.) by marker-assisted backcrossing. PhD Dissertation of University of Hohenheim, 2005
[21]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199–207
[22]Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 107: 1235–1242
[23]Song Q J, Marek LF, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128
[24]Cox T S. Expectations of means and genetic variances in backcross populations. Theor Appl Genet, 1984, 68: 35–41
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[3] 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745.
[4] 朱协飞**,王鹏**,司占峰,张天真*. 基于陆地棉背景的海岛棉染色体片段导入系产量性状QTL定位[J]. 作物学报, 2017, 43(12): 1784-1790.
[5] 闫伟,李元,宋茂兴,张旷野,孙铭泽,瞿会,李凤海,钟雪梅,朱敏,杜万里,吕香玲*. 玉米抗灰斑病QTL元分析及其验证[J]. 作物学报, 2016, 42(05): 758-767.
[6] 张慧,顾世梁,李韬. 一种新的符合度算法及其应用[J]. 作物学报, 2016, 42(01): 141-148.
[7] 张玉娇,李军,郭正,岳志芳. 渭北旱塬免耕/深松轮耕麦田产量和土壤水分对施肥的响应模拟[J]. 作物学报, 2015, 41(11): 1726-1739.
[8] 张文宇, 张伟欣, 葛道阔, 曹宏鑫, 刘岩, 宣守丽, 傅坤亚, 冯春焕, 陈魏涛. 基于生物量的油菜主茎叶片形态参数模拟研究[J]. 作物学报, 2015, 41(09): 1435-1444.
[9] 张亚杰,李京,彭红坤,陈秀斌,郑红裕,陈升孛,刘安国,胡立勇. 油菜生育期动态模拟模型的构建[J]. 作物学报, 2015, 41(05): 766-777.
[10] 张冬玲,张洪娜,郝晨阳,王兰芬,李甜,张学勇*. 花后冠层温度对小麦产量的影响及几个关联SSR位点的效应分析[J]. 作物学报, 2015, 41(04): 548-556.
[11] 赵晨晨,黄福灯,龚盼,杨茜,程方民,潘刚. 水稻叶片早衰突变体osled的生理特征与基因定位[J]. 作物学报, 2014, 40(11): 1946-1955.
[12] 孟丽君,马秀芳,唐志强,沈枫,崔彦茹,柴路,陈凯,徐建龙,黎志康. 粳稻超优1号背景回交导入系的耐热性筛选与评价[J]. 作物学报, 2012, 38(11): 1949-1959.
[13] 王鹏,张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础[J]. 作物学报, 2012, 38(06): 947-953.
[14] 高晓清, 谢学文, 许美容, 王磊, 石英尧, 高用明, 朱苓华, 周永力, 黎志康. 水稻抗纹枯病导入系的构建及抗病位点的初步定位[J]. 作物学报, 2011, 37(09): 1559-1568.
[15] 胡霞, 石瑜敏, 贾倩, 徐琴, 王韵, 陈凯, 孙勇, 朱苓华, 徐建龙, 黎志康. 影响水稻穗部性状及籽粒碾磨品质的QTL及其环境互作分析[J]. 作物学报, 2011, 37(07): 1175-1185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!