欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 758-767.doi: 10.3724/SP.J.1006.2016.00758

• 研究简报 • 上一篇    下一篇

玉米抗灰斑病QTL元分析及其验证

闫伟,李元,宋茂兴,张旷野,孙铭泽,瞿会,李凤海,钟雪梅,朱敏,杜万里,吕香玲*   

  1. 沈阳农业大学特种玉米研究所, 辽宁沈阳 110866
  • 收稿日期:2015-10-15 修回日期:2016-03-02 出版日期:2016-05-12 网络出版日期:2016-03-14
  • 通讯作者: 吕香玲, E-mail: lvxiangling521@126.com; Tel:13664105185
  • 基金资助:

    本研究由国家自然科学基金项目(31301322)和辽宁省科技特派项目(2014215031)资助。

Meta-analysis and Validation of QTL for Resistance to Gray Leaf Spot in Maize

YAN Wei,LI Yuan,SONG Mao-Xing,ZHANG Kuang-Ye,SUN Ming-Ze,QU Hui,LI Feng-Hai,ZHONG Xue-Mei,ZHU Min,DU Wan-Li,LÜ Xiang-Ling*   

  1. Special Maize Institute, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2015-10-15 Revised:2016-03-02 Published:2016-05-12 Published online:2016-03-14
  • Contact: 吕香玲, E-mail: lvxiangling521@126.com; Tel:13664105185
  • Supported by:

    This study was supported by the NationalNatural Science Foundation of China (31301322) and the Special Talent Appointment in Technology of Liaoning Province (2014215031).

摘要:

玉米灰斑病是危害玉米生产的主要病害之一,目前对抗灰斑病基因数目、位置及作用方式仍然不清楚,这严重制约着玉米抗灰斑病育种进展。本研究利用元分析方法分析并整理了14篇玉米抗灰斑病QTL文献的信息,共筛选确定了13个一致性QTL区间。利用以自交系81162为轮回亲本、自交系CN165为非轮回亲本构建的回交导入群体根据连锁不平衡原理对13个一致性QTL进行验证,在13个一致性QTL区间共获得20多个偏分离位点。第1和第4染色体上偏分离最严重,其他染色体上偏分离度较小。说明第1和第4染色体上存在着效应较大的抗病QTL。第1染色体标记umc2227、bnlg1832、umc1243、umc2025、umc1515、umc1297、umc1461处供体基因频率均在50%以上,可能存在几个连锁的抗病基因。第4染色体上基因位于标记bnlg2291和umc1194之间。研究为精细定位供体CN165中第1和第4染色体上的抗灰斑病QTL奠定了基础。

关键词: 灰斑病, 元分析, 一致性QTL, 回交导入系, 主效QTL

Abstract:

Gray leaf spot (GLS) is one of the most severe leaf diseases of maize worldwide. The breeding progress for resistance to GLS has been seriously hindered by less knowledge about QTL number, QTL intervals and mechanism of GLS. Based on meta-analysis, we conformed 13 consensus QTL regionsfrom 14 articles on resistance to gray leaf spot of maize. One backcross with inbred line 81162 as recurrent parent and inbred line CN165 as donor parent, was used to test the consensus of those 13 QTL regions on the basic of linkage disequilibrium gettingmore than 20 partial separated loci. High level of partial separationindicated that there were QTLs with high effects of resistance to GLS on chromosome 1 and chromosome 4. On chromosome 1, the donor genes closed to markers of umc2227, bnlg1832, umc1243, umc2025, umc1515, umc1297, umc1461 showed the frequency over 50%. Therefore, we inferred that there were a few of highly linked QTLs on chromosome 1. The resistant QTL on chromosome 4 was located between markers bnlg2291 and umc1194. Consequently, this study could lay a foundation for the QTL fine mapping on chromosome 1 and 4 in the donor parent CN165.

Key words: Gray leaf spot, Meta-analysis, Consensus QTLs, Backcross introgression lines, Major QTL

[1] 王桂清, 陈捷. 玉米灰斑病抗病性研究进展. 沈阳农业大学学报, 2000, 31: 418–422
Wang G Q, Chen J. The research progress of resistance to gray leaf spot of maize. J Shenyang Agric Univ, 2000, 31: 418–422 (in Chinese with English abstract)
[2] Wang J, Levy M, Dunkle L D. Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology, 1998, 88: 1269–1275
[3] Ward J M J, Stromberg E L, Nowell D C, Nutter F W J. Gray leaf spot::a disease of global importance in maize production. Plant Dis, 1999, 83: 884–895
[4] 李世强, 陈威, 谭静, 王坤, 番兴明. 玉米灰斑病的抗性机理研究进展. 生物技术进展, 2011, (1): 112–115
Li S Q, Chen W, Tan J, Wang K, Fan X M. The progress of resistance mechanism on maize gray leaf spot. Curr Biotechnol, 2011, (1): 112–115 (in Chinese with English abstract)
[5] 曹国辉. 玉米灰斑病及抗性研究. 玉米科学, 2009, 17: 152–155
Cao G H. The research advance on resistance to grey leaf spot in maize. J Maize Sci, 2009, 17: 152–155 (in Chinese with English abstract)
[6] 吕香玲, 李新海, 陈阳, 史振声, 李凤海, 傅俊范. 玉米种质抗灰斑病鉴定与评价. 玉米科学, 2011, 19(6): 125–128
Lü X L, Li X H, Chen Y, Shi Z S, Li F H, Fu J F. Evaluation and identification of resistance to gray leaf spot (gls) in maize germplasm. J Maize Sci, 2011, 19(6): 125–128 (in Chinese with English abstract)
[7] Zhang Y, Xu L, Fan X M, Tan J, Chen W. QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet, 2012, 125: 1797–1808
[8] Gordon S G, Bartsch M, Matthies I, Gevers H O, Lipps P E. Linkage of molecular markers to Cercosporazeae-maydis resistance in maize. Crop Sci, 2004, 44: 628–636
[9] Lehmensiek, Esterhuizen A M, Staden D V, Nelson S W, Retief A E. Genetic mapping of gray leaf spot(GLS) resistance genes in maize. Theor Appl Genet, 2001, 103: 797–803
[10] Danson J, Lagat M, Kimani M, Kuria A. Quantitative trait loci (QTLs) for resistance to gray leaf spot and common rust diseases of maize. Afr J Biotechnol, 2008, 7: 3247–3254
[11] Clements M J, Dudley J W, White D G. Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology, 2000, 90: 1018–1025
[12] Saghai Maroof M A, Yue Y G, Xiang Z X, Stromberg E L, Rufener G K. Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theor Appl Genet, 1996, 93: 539–546
[13] Veiga A D, Pinho R G V, Resende L V. Quantitative trait loci associated with resistance to gray leaf spot and grain yield in corn. Ciênc Agrotec, 2012, 36: 31–38
[14] Pozar G, Butruille D, Silva H D, McCuddin Z P, Penna J C V. Mapping and validation of quantitative trait loci for resistance to Cercosporazeae-maydis infection in tropical maize. Theor Appl Genet, 2009, 118: 553–564
[15] Chung C L, Poland J, Kump K, Benson J, Longfellow J, Walsh E, Balint K P, Nelson R. Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theor Appl Genet, 2011, 123: 307–326
[16] Zwonitzer J C, Coles N D, Krakowsky M D, Arellano C, Holland J B, McMullen M D, Pratt R C, Balint-Kurti P J. Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? Phytopathology, 2010, 100: 72–79
[17] Asea G, Vivek B S, Lipps P E, Pratt R C. Genetic gain and cost efficiency of marker-assisted selection of maize for improved resistance to multiple foliar pathogens. Mol Breed, 2012, 29: 515–527
[18] Balint K P J, Wisser R, Zwonitzer J C. Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci, 2008, 48: 1696–1704
[19] Bubeck D M, Goodman M M, Beavis W D, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci, 1993, 33: 838–847
[20] Berger D K, Carstens M, Korsman J N, Middleton F, Kloppers F J, Tongoona P, Myburg A A. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercosporazeina. BMC Genet, 2014, 15: 60, DOI: 10.1186/1471-2156-15-60
[21] Lee M, Sharopova N, Beavis W D, Grant D, Katt M, Blair D, Hallauer A. Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol, 2002, 48: 453–461
[22] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169–2185
[23] Truntzler M, Barrie`re Y, Sawkins M C, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet, 2010, 121: 1465–1482
[24] Lü X L, Li X H, Xie C X, Hao Z F, Ji H L,Shi L Y,Zhang S H. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics. Front Agric China, 2008, 24: 365–371
[25] Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet, 1998, 97: 381–397
[26] 徐建龙, 薛庆中, 罗利军, 黎志康. 近等基因导入系定位水稻抗稻曲病数量性状位点的研究初报. 浙江农业学报, 2002, 14(1): 14–19
Xu J L, Xue Q Z, Luo L J, Li Z K. Preliminary report on quantitative trait loci mapping of false smut resistance using near-isogenic introgression
lines in rice. Acta Agric Zhejiangensis, 2002, 14(1): 14–19 (in Chinese with English abstract)
[27] Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Domingo R J, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice(Oryza sativa L.). Plant Mol Biol, 2005, 59: 33–52
[28] 李芳, 程立锐, 许美容, 徐建龙, 黎志康. 利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL. 作物学报, 2009, 35: 1729–1737
    Li F, Cheng L R, Xu M R, Xu J L, Li Z K. QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice. Acta Agron Sin, 2009, 35: 1729–1737 (in Chinese with English abstract)
[29] Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613–622
[30] Ho J C, McCouch S R, Smith M E. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. TheorAppl Genet, 2002, 105: 440–448
[31] 吕香玲, 李新海, 郝转芳, 吉海莲, 史利玉, 张世煌. 基于近等基因导入系发掘玉米抗甘蔗花叶病毒主效基因. 玉米科学, 2007, 15(3): 9–14
Lü X L, Li X H, Hao C F, Ji H L, Shi L Y, Zhang S H. Identification of major QTL for resistance to sugarcane mosaic virus in maize based on introgression lines analysis. J Maize Sci, 2007, 15(3): 9–14 (in Chinese with English abstract)
[32] Li Y, Liu C, Shi Y, Song Y, Wang T, Li Y. Genetic location and evaluation of chromosomal segments for drought tolerance at flowering stage in maize using selected backcross populations. Plant Breed, 2009, 128: 342–347
[33] Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M C, Castelletti S, Tuberosa R. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol, 2011, 11: 4
[34] Pea G, Aung H H, Frascaroli E, Landi P, Pè M E. Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). BMC Genomics, 2013, 14: 61
[35] Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405–416
[36] 董怀玉, 姜钰, 王丽娟, 徐秀德. 玉米种质资源抗灰斑病鉴定与评价. 植物遗传资源学报, 2005, 6: 441–443
    Dong H Y, Jiang Y, Wang L J, Xu X D. Evaluation on maize germplasm resources for resistance to gray leaf spot. J Plant Genet Resour, 2005, 6: 441–443 (in Chinese with English abstract)
[37] CIMMYT. Applied Molecular Genetics Laboratory. Laboratory Protocol. Mexico: CIMMYT, 1998
[38] Gordon S G, Lipps P E, Pratt R C. Heritability and components of resistance to Cercospora zeae-maydis derived from maize inbred VO613Y. Phytopathology, 2006, 96: 593–598
[39]Benson J M, Poland J A, Benson B M, Stromberg E L, Nelson R J. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet, 2015, 11: e1005045

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[3] 江培顺,张焕欣,吕香玲,郝转芳,李博,李明顺,王宏伟,慈晓科,张世煌,李新海,史振声,翁建峰. 玉米产量相关性状Meta-QTL及候选基因分析[J]. 作物学报, 2013, 39(06): 969-978.
[4] 闫宁,谢尚潜,耿青春,徐宇,李广军,刘兵,汪霞,李其刚,章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础[J]. 作物学报, 2013, 39(02): 258-268.
[5] 江建华,刘强明,卢超,张红,刘晓丽,党小景,牛付安,BRERIA Manamik Caleb,赵凯铭,洪德林. 粳稻杂种优势遗传基础剖析[J]. 作物学报, 2012, 38(12): 2147-2161.
[6] 丁俊杰,姜翠兰,顾鑫,杨晓贺,赵海红,申宏波,仕相林,刘春燕,胡国华,陈庆山. 利用与大豆灰斑病抗性基因连锁的SSR标记构建品种(系)的分子身份证[J]. 作物学报, 2012, 38(12): 2206-2216.
[7] 高晓清, 谢学文, 许美容, 王磊, 石英尧, 高用明, 朱苓华, 周永力, 黎志康. 水稻抗纹枯病导入系的构建及抗病位点的初步定位[J]. 作物学报, 2011, 37(09): 1559-1568.
[8] 张伟, 刘方, 黎绍惠, 王为, 王春英, 张香娣, 王玉红, 宋国立, 王坤波. 陆地棉重组近交系产量及其构成因素的QTL分析[J]. 作物学报, 2011, 37(03): 433-442.
[9] 栗文娟,刘志斋,石云素,宋燕春,王天宇,徐辰武,黎裕. 基于元分析和生物信息学分析的玉米抗旱相关性状QTL一致性区间定位[J]. 作物学报, 2010, 36(09): 1457-1467.
[10] 吴琼,齐照明,刘春燕,胡国华,陈庆山. 基于元分析的大豆生育期QTL的整合[J]. 作物学报, 2009, 35(8): 1418-1424.
[11] 王帮太,吴建宇,丁俊强,席章营. 玉米产量及产量相关性状QTL的图谱整合[J]. 作物学报, 2009, 35(10): 1836-1843.
[12] 谢学文;许美容;藏金萍;孙勇;朱苓华;徐建龙;周永力;黎志康. 水稻抗纹枯病QTL表达的遗传背景及环境效应[J]. 作物学报, 2008, 34(11): 1885-1893.
[13] 赵秀琴;徐建龙;朱苓华;黎志康. 利用回交导入系定位干旱环境下水稻植株水分状况相关QTL[J]. 作物学报, 2008, 34(10): 1696-1703.
[14] 孙勇;藏金萍;王韵;朱苓华;Fotokian M H;徐建龙 ;黎志康. 利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL[J]. 作物学报, 2007, 33(10): 1611-1617.
[15] 郭玉双;张艳菊;朱延明;李杰;柏锡;张淑珍;吴书音;李海燕. 转几丁质酶和核糖体失活蛋白双价基因大豆的获得与抗病性鉴定[J]. 作物学报, 2006, 32(12): 1841-1847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!