欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2147-2161.doi: 10.3724/SP.J.1006.2012.02147

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

粳稻杂种优势遗传基础剖析

江建华1,2,刘强明1,卢超1,张红1,刘晓丽1,党小景1,牛付安1,BRERIA Manamik Caleb1,赵凯铭1,洪德林1,*   

  1. 1 南京农业大学/作物遗传与种质创新国家重点实验室, 江苏南京210095; 2 安徽省农业科学院作物研究所, 安徽合肥230031
  • 收稿日期:2012-04-05 修回日期:2012-07-05 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2010AA101301)和高等学校博士学科点专项科研基金(20110097110038)资助。

Genetic Basis Dissection of Heterosis in Japonica Rice (Oryza sativa L.)

JIANG Jian-Hua1,2,LIU Qiang-Ming1,LU Chao1,ZHANG Hong1,LIU Xiao-Li1,DANG Xiao-Jing1,NIU Fu-An1,BRERIA Manamik Caleb1,ZHAO Kai-Ming1,HONG De-Lin1,*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crops, Anhui Academy of Agricultural Sciences, Hefei 230031, China
  • Received:2012-04-05 Revised:2012-07-05 Published:2012-12-12 Published online:2012-10-08

摘要:

为了解控制粳稻产量相关性状及其中亲优势的基因作用类型, 利用秀堡RIL群体及其2个回交(BCF1)群体对株高、生育期、单株有效穗数、穗长、每穗颖花数、结实率、一次枝梗数和二次枝梗数8个性状及其中亲杂种优势进行QTL定位。共检测到58个显著的主效QTL (M-QTL), 单个M-QTL的贡献率变幅为3.3%~41.9%77.6%M-QTL表现为加性效应, 15.5%M-QTL表现为部分或完全显性效应, 6.9%M-QTL表现为超显性效应。共检测到90对显著的双基因上位性QTL(E-QTL)。在RIL群体中检测到44E-QTL, 单对E-QTL的贡献率变幅为1.7%~8.0%, 平均3.7%。在XSBCF1群体中检测到27E-QTL, 其中利用BCF1表型值检测到16E-QTL, 单对E-QTL的贡献率变幅为12.7%~78.5%, 平均29.2%; 利用中亲优势值检测到11E-QTL, 单对E-QTL的贡献率变幅为15.0%~71.8%, 平均40.1%。在CBBCF1群体中检测到19E-QTL, 其中利用BCF1表型值检测到12E-QTL, 单对E-QTL的贡献率变幅为2.7%~64.4%, 平均30.1%; 利用中亲优势值检测到9E-QTL, 单对E-QTL的贡献率变幅为21.7%~64.1%, 平均40.0%。在CBBCF1群体中, 利用BCF1表型值和中亲优势值都检测到的E-QTL2对。上述结果表明上位性效应是粳稻秀堡组合杂种优势的主要遗传基础

关键词: 粳稻, 主效QTL, 上位性QTL, 杂种优势

Abstract:

To understand the types of gene action controlling yield-related traits and their mid-parental heterosis in japonica rice, we carried out quantitative trait locus (QTL) mapping by using 254 recombinant inbred lines (RILs) derived from a cross of japonica rice varieties Xiushui 79, C Bao and two backcross hybrid (BCF1) populations derived from these RILs. Phenotypic values and mid-parental heterosis values (HMP) were investigated for eight traits in the three populations. The eight traits were plant height, growth duration, productive panicle number per plant, panicle length, spikelet number per panicle, percentage of spikelet fertility, primary branch number per panicle, and secondary branch number per panicle. A total of 58 main-effect QTLs (M-QTL) were detected in the three populations. The percentage of phenotypicvariance explained by single M-QTL ranged from 3.3% to 41.9%. Among the 58 M-QTLs detected, 45 M-QTLs (77.6%) showed additive effects, 9 M-QTLs (15.5%) showed partial-to-complete dominant effects, and 4 M-QTLs (6.9%) showed over-dominant effects. Ninety pairs of digenic epistatic QTL (E-QTL) were detected in the three populations. Among them, 44 pairs of E-QTLs were detected in RIL population, and the percentage of phenotypic variance explained by singlepair of QTL rangedfrom 1.7% to 8.0%, with an average of 3.7%.In XSBCF1 population (Xiushui 79 as recurrent parent), 27 pairs of E-QTL were detected. Sixteen pairs of E-QTL were detected by using BCF1 phenotypic values, and the percentage of phenotypic variance explained by singleE-QTL rangedfrom 12.7% to 78.5%, with an average of 29.2%. Eleven pairs of E-QTL were detected by using HMP values, and the percentage of phenotypic variance explained by singleE-QTL rangedfrom 15.0% to 71.8%, with an average of 40.1%. In CBBCF1 population (C Bao as recurrent parent), 19 pairs of E-QTL were detected. Twelve pairs of E-QTL were detected by using BCF1 phenotypic value, and the percentage of phenotypic variance explained by singlepair of E-QTL rangedfrom 2.7% to 64.4%, with an average of 30.1%. Nine pairs of E-QTL were detected by using HMP value, and the percentage of phenotypic variance explained by singlepair of E-QTL rangedfrom 21.7% to 64.1%, with an average of 40.0%. Two pairs of E-QTL were detected by using both BCF1 phenotypic value and HMP value in CBBCF1 population. These results indicated that epistatic effects were the primary genetic basis of heterosis in this cross in japonica rice.

Key words: Japonica rice, Main-effect QTL, Epistatic QTL, Heterosis

[1]Yuan L-P(袁隆平). Yuan Longping’s Collection Works, Preface (袁隆平论文集, 序). Beijing: Science Press, 2010 (in Chinese)



[2]Deng H-F(邓华凤), He Q(何强), Shu F(舒服), Zhang W-H(张武汉), Yang F(杨飞), Jing Y-H(荆彦辉), Dong L(东丽), Xie H(谢辉). Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice (杂交水稻), 2006, 21(1): 1–6 (in Chinese with English abstract)



[3]Liang K(梁奎), Huang D-C(黄殿成), Zhao K-M(赵凯铭), Nguyen P T(阮方松), Xie H(谢辉), Ma W-X(马文霞), Hong D-L(洪德林). Screening marker genotypes with elite combining ability for yield traits in parents of hybrid japonica rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1270–1279 (in Chinese with English abstract)



[4]Yuan L P. Development and prospects of hybrid rice breeding. In: You C B, Chen Z L, Ding Y, eds. Biotechnology in Agriculture. Proceedings of the First Asia-Pacific Conference on Agricultural Biotechnology. Beijing, China, 20-24 August 1992. Dordrecht, Netherlands: Kluwer Academic Publishers 1993. pp 136–144



[5]Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822



[6]Lu Q-S(卢庆善), Sun Y(孙毅), Hua Z-T(华泽田). Heterosis of Cereal Crops (农作物杂种优势). Beijing: China Agricultural Science and Technology Press, 2002. p 240 (in Chinese)



[7]Xiao J, Li J, Yuan L, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754



[8]Li Z K, Pinson S R M, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453–465



[9]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231



[10]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z -K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89–101



[11]Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: II. Grain yield components. Genetics, 2001, 158: 1755–1771



[12]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649–659



[13]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753



[14]Zeng J(曾晶), Jiang G-H(姜恭好), He Y-Q(何予卿), Zhang D-P(张端品). The genetic bases analysis of plant height and heading date in indica/japonica hybrids. Mol Plant Breed (分子植物育种), 2006, 4(4): 527–534 (in Chinese with English abstract)



[15]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579



[16]Li L Z, Lu K Y, Chen Z M, Mu T M, Hu Z L, Li X Q. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics, 2008, 180: 1725–1742



[17]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885–1895



[18]Hong D-L(洪德林), Yang K-Q(杨开晴), Pan E-F(潘恩飞). Heterosis of F1s derived from different ecological types and combining ability of their parents in japonica rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2002, 16(3): 216–220 (in Chinese with English abstract)



[19]Jin W-D(金伟栋), Zhang W(张旺), Hong D-L(洪德林). Heterosis of late-maturing japonica hybrids (Oryza sativa L.) and parent’s combining ability in south Jiangsu region. Acta Agron Sin (作物学报), 2005, 31(11): 1478–1484 (in Chinese with English abstract)



[20]Jiang J-H(江建华), Zhao Q-B(赵其兵), Liu Q-M(刘强明), Chen L(陈兰), Chen F-L(陈甫龙), Qiao B-J(乔保健), Hong D-L(洪德林). Mining applicable elite alleles of growth duration, plant height and panicle number per plant by conditional QTL mapping in japonica rice. Chin J Rice Sci (中国水稻科学), 2011, 25(3): 277–283 (in Chinese with English abstract)



[21]Guo Y, Hong D L. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.). J Genet Genomics, 2010, 37: 531–542



[22]Wang D-L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed model approaches. Theor Appl Genet, 1999, 99: 1255–1264



[23]Mather K, Jinks J L. Biometrical Genetics, 3rd edn. London: Chapman and Hall, 1982



[24]McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1: 72–84

[1] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[2] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[3] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[4] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[5] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[6] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[7] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[8] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[9] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[10] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
[11] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[12] 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588.
[13] 马小定,唐江红,张佳妮,崔迪,李慧,黎毛毛,韩龙植. 东乡野生稻与日本晴多态性标记的开发[J]. 作物学报, 2019, 45(2): 316-321.
[14] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[15] 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!