作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2147-2161.doi: 10.3724/SP.J.1006.2012.02147
江建华1,2,刘强明1,卢超1,张红1,刘晓丽1,党小景1,牛付安1,BRERIA Manamik Caleb1,赵凯铭1,洪德林1,*
JIANG Jian-Hua1,2,LIU Qiang-Ming1,LU Chao1,ZHANG Hong1,LIU Xiao-Li1,DANG Xiao-Jing1,NIU Fu-An1,BRERIA Manamik Caleb1,ZHAO Kai-Ming1,HONG De-Lin1,*
摘要:
为了解控制粳稻产量相关性状及其中亲优势的基因作用类型, 利用秀堡RIL群体及其2个回交(BCF1)群体对株高、生育期、单株有效穗数、穗长、每穗颖花数、结实率、一次枝梗数和二次枝梗数8个性状及其中亲杂种优势进行QTL定位。共检测到58个显著的主效QTL (M-QTL), 单个M-QTL的贡献率变幅为3.3%~41.9%。77.6%的M-QTL表现为加性效应, 15.5%的M-QTL表现为部分或完全显性效应, 6.9%的M-QTL表现为超显性效应。共检测到90对显著的双基因上位性QTL(E-QTL)。在RIL群体中检测到44对E-QTL, 单对E-QTL的贡献率变幅为1.7%~8.0%, 平均3.7%。在XSBCF1群体中检测到27对E-QTL, 其中利用BCF1表型值检测到16对E-QTL, 单对E-QTL的贡献率变幅为12.7%~78.5%, 平均29.2%; 利用中亲优势值检测到11对E-QTL, 单对E-QTL的贡献率变幅为15.0%~71.8%, 平均40.1%。在CBBCF1群体中检测到19对E-QTL, 其中利用BCF1表型值检测到12对E-QTL, 单对E-QTL的贡献率变幅为2.7%~64.4%, 平均30.1%; 利用中亲优势值检测到9对E-QTL, 单对E-QTL的贡献率变幅为21.7%~64.1%, 平均40.0%。在CBBCF1群体中, 利用BCF1表型值和中亲优势值都检测到的E-QTL有2对。上述结果表明上位性效应是粳稻秀堡组合杂种优势的主要遗传基础。
[1]Yuan L-P(袁隆平). Yuan Longping’s Collection Works, Preface (袁隆平论文集, 序). Beijing: Science Press, 2010 (in Chinese)[2]Deng H-F(邓华凤), He Q(何强), Shu F(舒服), Zhang W-H(张武汉), Yang F(杨飞), Jing Y-H(荆彦辉), Dong L(东丽), Xie H(谢辉). Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice (杂交水稻), 2006, 21(1): 1–6 (in Chinese with English abstract)[3]Liang K(梁奎), Huang D-C(黄殿成), Zhao K-M(赵凯铭), Nguyen P T(阮方松), Xie H(谢辉), Ma W-X(马文霞), Hong D-L(洪德林). Screening marker genotypes with elite combining ability for yield traits in parents of hybrid japonica rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1270–1279 (in Chinese with English abstract)[4]Yuan L P. Development and prospects of hybrid rice breeding. In: You C B, Chen Z L, Ding Y, eds. Biotechnology in Agriculture. Proceedings of the First Asia-Pacific Conference on Agricultural Biotechnology. Beijing, China, 20-24 August 1992. Dordrecht, Netherlands: Kluwer Academic Publishers 1993. pp 136–144[5]Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822[6]Lu Q-S(卢庆善), Sun Y(孙毅), Hua Z-T(华泽田). Heterosis of Cereal Crops (农作物杂种优势). Beijing: China Agricultural Science and Technology Press, 2002. p 240 (in Chinese)[7]Xiao J, Li J, Yuan L, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754[8]Li Z K, Pinson S R M, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453–465[9]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231[10]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z -K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89–101[11]Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: II. Grain yield components. Genetics, 2001, 158: 1755–1771[12]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649–659[13]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753[14]Zeng J(曾晶), Jiang G-H(姜恭好), He Y-Q(何予卿), Zhang D-P(张端品). The genetic bases analysis of plant height and heading date in indica/japonica hybrids. Mol Plant Breed (分子植物育种), 2006, 4(4): 527–534 (in Chinese with English abstract)[15]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579[16]Li L Z, Lu K Y, Chen Z M, Mu T M, Hu Z L, Li X Q. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics, 2008, 180: 1725–1742[17]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885–1895[18]Hong D-L(洪德林), Yang K-Q(杨开晴), Pan E-F(潘恩飞). Heterosis of F1s derived from different ecological types and combining ability of their parents in japonica rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2002, 16(3): 216–220 (in Chinese with English abstract)[19]Jin W-D(金伟栋), Zhang W(张旺), Hong D-L(洪德林). Heterosis of late-maturing japonica hybrids (Oryza sativa L.) and parent’s combining ability in south Jiangsu region. Acta Agron Sin (作物学报), 2005, 31(11): 1478–1484 (in Chinese with English abstract)[20]Jiang J-H(江建华), Zhao Q-B(赵其兵), Liu Q-M(刘强明), Chen L(陈兰), Chen F-L(陈甫龙), Qiao B-J(乔保健), Hong D-L(洪德林). Mining applicable elite alleles of growth duration, plant height and panicle number per plant by conditional QTL mapping in japonica rice. Chin J Rice Sci (中国水稻科学), 2011, 25(3): 277–283 (in Chinese with English abstract)[21]Guo Y, Hong D L. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.). J Genet Genomics, 2010, 37: 531–542[22]Wang D-L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed model approaches. Theor Appl Genet, 1999, 99: 1255–1264[23]Mather K, Jinks J L. Biometrical Genetics, 3rd edn. London: Chapman and Hall, 1982[24]McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1: 72–84 |
[1] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
[2] | 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422. |
[3] | 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914. |
[4] | 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249. |
[5] | 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184. |
[6] | 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及Wx和OsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888. |
[7] | 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585. |
[8] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIa和SSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702. |
[9] | 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116. |
[10] | 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326. |
[11] | 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545. |
[12] | 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588. |
[13] | 马小定,唐江红,张佳妮,崔迪,李慧,黎毛毛,韩龙植. 东乡野生稻与日本晴多态性标记的开发[J]. 作物学报, 2019, 45(2): 316-321. |
[14] | 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795. |
[15] | 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813. |
|