欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1559-1568.doi: 10.3724/SP.J.1006.2011.01559

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗纹枯病导入系的构建及抗病位点的初步定位

高晓清1,谢学文1,许美容1,王磊1,石英尧3,高用明1,朱苓华1,周永力1,*,黎志康1,2   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京 100081;2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines; 3安徽农业大学, 安徽合肥 230036
  • 收稿日期:2011-01-28 修回日期:2011-04-27 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 周永力, E-mail: zhouyl@caas.net.cn
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2006-G51)和比尔和梅琳达•盖茨基金项目资助。

Development of Introgression Lines and Identification of QTLs for Resistance to Sheath Blight

GAO Xiao-Qing1,XIE Xue-Wen1,XU Mei-Rong1,WANG Lei1,SHI Ying-Yao3,GAO Yong-Min1,ZHU Ling-Hua1,ZHOU Yong-Li1,*,LI Zhi-Kang1,2   

  1. 1 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines; 3 Anhui Agricultural University, Hefei 230036, China
  • Received:2011-01-28 Revised:2011-04-27 Published:2011-09-12 Published online:2011-06-28
  • Contact: 周永力, E-mail: zhouyl@caas.net.cn

摘要: 以我国目前生产中广泛应用的杂交稻恢复系蜀恢527和明恢86为轮回亲本, 以江西丝苗为供体亲本配制BC2F2混合群体。通过逐代人工接种筛选, 获得49个BC2F4抗病导入系。对抗病选择导入系进行基因型分析, 利用基于遗传搭车原理的卡方检验对等位基因导入频率的偏离进行检测, 共检测到12个显著位点, 2个群体定位的QTL各有1个在以往不同群体中也能被检测到。主要农艺性状分析表明, 非接种条件下, 选择导入系群体的抽穗期、株高和千粒重等与轮回亲本无显著差异;在接种的条件下, 在2个试验地点中, 分别有6个和2个蜀恢527和明恢86背景的株系抗病性显著高于轮回亲本, 产量与轮回亲本无显著差异。上述结果为水稻抗纹枯病分子育种提供了有用的信息和中间材料。

关键词: 水稻, 回交导入系, 纹枯病, QTL

Abstract: In this study, two random BC2F2 populations were developed by cross and backcross, in which two major hybrid restorer lines Shuhui 527 and Minghui 86 were used as recurrent parents respectively, and Jiangxisimiao used as donor. The bulks of the BC2F2 populations were inoculated with Rhizoctonia solani to screen the lines resistant to sheath blight, and 49 resistant introgression lines (ILs) were selected. The genotypes of ILs were analyzed with evenly distributed polymorphic SSR markers, and a total of 12 significant loci were identified by χ2 test analysis. Among them, two allelic frequency-deviation loci were located in the same or near regions identified in the previous studies. In the field test without artificial inoculation, there was no significant difference between all the agronomic traits investigated in the selected ILs and their recurrent parents. Under heavily diseased conditions, six ILs with Shuhui 527 background and two ILs with Minghui 86 background showed similar agronomic traits and significantly higher resistance to sheath blight than their recurrent parents at two experimental sites, which can be served as immediate sources of sheath blight resistance for hybrid rice breeding and directly used in hybrid rice production.

Key words: Rice, Backcross introgression lines, Sheath blight, QTL

[1]Meng Q-Z(孟庆忠), Liu Z-H(刘志恒), Wang H-Y(王鹤影), Zhang S-S(张书绅), Wei S-H(魏松红). Research progress in rice sheath blight. J Shenyang Agric Univ (沈阳农业大学学报), 2001, 32(5): 376-381 (in Chinese with English abstract)
[2]Tang J-B(唐家斌), Ma B-T(马炳田), Wang L-X(王玲霞), Li P(李平), Zheng A-P(郑爱萍), Chen H(陈红). Biological control of rice sheath blight with Trichoderma and Thichoderma-like. Chin J Rice Sci (中国水稻科学), 2002, 16(1): 63-66 (in Chinese with English abstract)
[3]Chang T T. The present status of breeding for resistance to rice blast and sheath blight in Taiwan. Int Rice Res Newsl, 1986, 11(2): 1-7
[4]Sha X Y, Zhu L H. Resistance of some rice varieties to sheath blight (ShB). Int Rice Res Newsl, 1989, 15: 7-8
[5]Marchetti M A. Quantification of the relationship between sheath blight severity and yield loss in rice. Plant Dis, 1991, 75: 773-775
[6]Zuo S-M(左示敏), Zhang Y-F(张亚芳), Chen Z-X(陈宗祥), Chen X-J(陈夕军), Pan X-B(潘学彪). Current progress on genetics and breeding in resistance to rice sheath blight. Scientia Sinica Vitae (中国科学: 生命科学), 2010, 40(11): 1014-1023 (in Chinese)
[7]Zeng Y-X(曾宇翔), Li X-M(李西明), Ma L-Y(马良勇), Ji Z-J(季芝娟), Yang C-D(杨长登). Research progress on mapping of gene conferring resistance to sheath blight and exploitation of resistance resources in rice. Chin J Rice Sci (中国水稻科学), 2010, 24(5): 544-550 (in Chinese with English abstract)
[8]Li Z-K(黎志康). Strategies for molecular rice breeding in China. Mol Plant Breed (分子植物育种), 2005, 3(5): 603-608 (in Chinese with English abstract)
[9]Pan X-B(潘学彪), Chen Z-X(陈宗祥), Xu J-Y(徐敬友), Tong Y-H(童蕴慧), Wang Z-B(王子斌), Pan X-Y(潘兴元). The effects of different methods of inoculation and investigation on genetic research of resistance to rice sheath blight. J Jiangsu Agric Coll (江苏农学院学报), 1997, 18(3): 27-32 (in Chinese with English abstract)
[10]Schlotterer C. Hitchhiking mapping-functional genomics from the population genetics perspective. Trends Genet, 2003, 19: 32-38
[11]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H, Maghirange R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33-52
[12]Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Laffitte R, Zhai H-Q(翟虎渠), Wan J-M(万建民), Zhu L-H(朱苓华), Li Z-K(黎志康). Preliminary identification of genetic overlaps between sheath blight resistance and drought tolerance in the introgression lines from directional selection. Acta Agron Sin (作物学报), 2007, 33(8): 1380-1384 (in Chinese with English abstract)
[13]Li Z K, Pingson S R M, Marchetti M A, Stansel J W, Park W D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solam). Theor Appl Genet, 1995, 91: 382-388
[14]Pan X-B(潘学彪), Zou J-H(邹军煌), Chen Z-X(陈宗祥), Lu J-F(陆驹飞), Yu H-X(于恒秀), Li H-T(李海涛), Wang Z-B(王子斌), Rush M C, Zhu L-H(朱立煌). Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. Chin Sci Bull (科学通报), 1999, 44(15): 1629-1635 (in Chinese with English abstract)
[15]Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101: 569-573
[16]Kunihiro Y(国广泰史), Qian Q(钱前), Sato H(佐藤宏之), Teng S(滕胜), Zeng D-L(曾大力), Fujimoto H(藤本宽), Zhu L-H(朱立煌). QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(1): 50-55 (in Chinese with English abstract)
[17]Han Y-P(韩月澎), Xing Y-Z(邢永忠), Chen Z-X(陈宗祥), Gu S-L(顾世梁), Pan X-B(潘学彪), Chen X-L(陈秀兰), Zhang Q-F(张启发). Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genet Sin (遗传学报), 2002, 29(7): 565-570 (in Chinese with English abstract)
[18]Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed Sci, 2004, 54: 265-271
[19]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 2005, 45: 503-510
[20]Xie X-W(谢学文), Xu M-R(许美容), Zang J-P(臧金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康). Genetic background and environmental effects on QTLs for sheath blight resistance revealed by reciprocal introgression lines in rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885-1893 (in Chinese with English abstract)
[21]Li F(李芳), Cheng L-R(程立锐), Xu M-R(许美容), Zhou Z(周政), Zhang F(张帆), Sun Y(孙勇), Zhou Y-L(周永力), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice. Acta Agron Sin (作物学报), 2009, 35(9): 1729-1737 (in Chinese with English abstract)
[22]Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology, 2009, 99: 1078-1084
[23]Sharma A, McClung A M, Pinson S R M, Kepiro J L, Shank A R, Tabien R E, Fjellstrom R G. Genetic mapping of sheath blight resistance QTLs within tropical japonica rice cultivars. Crop Sci, 2009, 49: 256-264
[24]Channamallikarjuna V, Sonah H, Prasad M, Rao G J H, Chand S, Upreti H C, Singh N K, Sharma T R. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed, 2010, 25: 155-166
[25]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441-1452
[26]Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara K, Hayasaka K, Miyao A, Monna L, Zhong H S, Tamura Y, Wang Z X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y A. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet, 1994, 8: 365-372
[27]Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L. Gramene: a resource for comparative grass genomics. Nucl Acid Res, 2002, 30: 103-105
[28]Ali A J, Xu J L, Ismail A M, Vijakumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yangghihara S, Cohen M, Caren B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76
[29]Zhang F(张帆), Hao X-B(郝宪彬), Gao Y-M(高用明), Hua Z-T(华泽田), Ma X-F(马秀芳), Chen W-F(陈温福), Xu Z-J(徐正进), Zhu L-H(朱苓华), Li Z-K(黎志康). Improving seedling cold tolerance of japonica rice by using the “Hidden Diversity” in indica rice germplasm in a backcross breeding program. Acta Agron Sin (作物学报), 2007, 33(10): 1618-1624 (in Chinese with English abstract)
[30]Lafitte H R, Li Z K, Vijayakumar C H M, Gao Y M, Shi Y, Xu J L, Fu B Y, Yu S B, Ali A J, Domingo J, Maghirang R Torres R, Mackill D. Improvement of rice drought tolerance through backcross breeding: evaluation of donors and results from drought nurseries. Field Crops Res, 2006, 97: 77-86
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!