作物学报 ›› 2012, Vol. 38 ›› Issue (03): 447-453.doi: 10.3724/SP.J.1006.2012.00447

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 江苏省农业科学院经济作物研究所, 江苏南京 210014
  • 收稿日期:2011-07-21 修回日期:2011-10-12 出版日期:2012-03-12 网络出版日期:2012-01-09
  • 通讯作者: 沈新莲, E-mail: Shenxinlian@yahoo.com.cn, Tel: 025-84390291
  • 基金资助:

    本研究由国家自然科学基金项目(30871557)和江苏省农业科技自主创新基金[CX(11)4008, CX(11)1021]资助。

Molecular Mapping and Identification of QTLs for Fiber Micronaire on Chromosome 7 from Gossypium klotzschianum

XU Peng, ZHU Jing, ZHANG Xiang-Gui, NI Wan-Chao, XU Ying-Jun,SHEN Xin-Lian*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2011-07-21 Revised:2011-10-12 Published:2012-03-12 Published online:2012-01-09
  • Contact: 沈新莲, E-mail: Shenxinlian@yahoo.com.cn, Tel: 025-84390291

摘要: 为了深入挖掘和利用棉属野生种克劳茨基棉(Gossypium klotzschianum)的优异等位基因,构建了一个(陆地棉泗棉2号×克劳茨基棉)×泗棉2号的BC1F2群体,对纤维品质性状初步定位,单标记相关分析表明位于第7染色体上的SSR标记NAU1362与马克隆值表现极显著相关。进一步选择在第7染色体上含有克劳茨基棉渐渗片段的BC1F2单株与轮回亲本泗棉2号回交,构建BC2F3和BC2F4分离群体,通过两年的田间重复试验验证该QTL的位置与效应。结果表明,该QTL (qFMIC-7-1)在BC2F3、BC2F4世代均被检测到,位于相同的标记区间,分别可以解释9.0%、8.8%的表型变异,增效基因来源于野生种克劳茨基棉,与BC1F2群体定位结果基本一致。同时在第7染色体上检测到另一马克隆值QTL (qFMIC-7-2),同样在BC2F3、BC2F4两个世代均能够被检测到,分别可以解释3.7%、4.7%的表型变异,但增效基因均来源于泗棉2号。

关键词: 棉花, 克劳茨基棉, 马克隆值, QTL定位

Abstract: G. klotzschianum, carrying the elite alleles, is a diploid species of D genome originated from Galapagos Island, harboring the lethal genes to cause inconsistency of apical bud growth. In this research, we overcame the obstacle and established a BC1F2 population derived from (Simian2× G. klotzschianum) ×Simian2 (G. hirsutum). The SSR marker NAU1362 on chromosome 7 showed significant correlation with micronaire value by single marker analysis. The BC2F3 and BC2F4 populations were developed from the cross between BC1F2 individuals containing target segments of chromosome 7 from G. klotzschianum and recurrent parent Simian2. The software Cartographer (V2.5) and the composite interval mapping were further employed to identify quantitative trait loci (QTL) associated with fiber micronaire in two generations. The fiber micronaire QTL qFMIC-7-1 identified in BC1F2 population was confirmed in BC2F3 and BC2F4, which explained 9.0% and 8.8% of the phenotypic variance, respectively. The G. klotzschianum allele decreased the fiber micronaire value. Another micronaire QTL qFMIC-7-2 on chromosome 7 was also detected in BC2F3 and BC2F4 generations with phenotypic variance of 3.7% and 4.7%, respectively. Simian2 was genotyped as decreased micronaire value. This study provides valuable resources for effectively utilization of potential elite genes from G. klotzschianum.

Key words: Cotton, G. klotzschianum, Micronaire, QTL mapping

[1]Pan J-J (潘家驹). Cotton Breeding. Beijing: China Agricultural Press, 1998. p 204 (in Chinese)

[2]Miller P A, Williams J C, Robinson H F, Comstock R E. Estimate of genotypic and environmental variances and covariances in upland cotton and their implication in selection. Agron J, 1958, 50: 126-131

[3]Miller P A, Rawlings J O. Breakup of initial linkage blocks through intermating in a cotton breeding population. Crop Sci, 1967, 7: 199-204

[4]Meredith W R, Bridge R R. Break up of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci, 1971, 11: 695-698

[5]May O L. Genetic variation for fiber quality. In: Basra A S ed. Cotton Fibers-developmental Biology, Quality Improvement, and Textile Processing. New York: Food Products Press, 1999. pp 183-229

[6]Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvacea). Rheedea, 1992, 2: 108-165

[7]Phillips L L. Interspecific incompatibility in Gossypium: IV. Temperature-conditional lethality in hybrids of G. klotzschianum. Amer J Bot, 1977, 64: 914-915

[8]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Zhou B-L(周宝良), Peng Y-J(彭跃进), Xu Y-J(徐英俊), Gu L-M(顾立美), Shen X-L(沈新莲). Studies on hybridization of G. hirsutum × G. klotzschianum Anderss and its uses. Jiangsu J Agric Sci (江苏农业学报), 1996, 12(4): 18-22 (in Chinese with English abstract)

[9]Shen X L, Zhu J, Zhang X G, Zhang B L, Cao Z B, Yang Y W, Xu P, Ni W C. Introgression of Gossypium klotzschianum genome into cultivated cotton, G. hirsutum. Cotton Sci, 2008, 20: 256-263

[10]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127

[11]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossipium. Genetics, 2007, 176: 527-541

[12]Xiao J, Wu K, Fang D D, Stelly D M, Yu J, Cantrell R G. New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci, 2009, 13: 75-157

[13]Zhang J, W Y T, Guo W Z, Zhang T Z. Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sin, 2000, 12: 267-269

[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[15]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[16]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer2.5. Statistical Genetics, Raleigh, NC: North Carolina State University, 2001-2005

[17]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468

[18]Wang H(王慧), Yu D-Y(喻德跃), Wu Q-J(吴巧娟), Gai J-Y(盖钧镒). Characterization of resistance genes to cotton worm with SSR markers in soybean. Soybean Sci (大豆科学), 2004, 23(2): 91-95 (in Chinese with English abstract)

[19]Xu J-C(徐吉臣), Zhou L-X(邹亮星). Identification of molecular markers associated with rice root traits by correlation coefficient analysis. Acta Genet Sin (遗传学报), 2002, 29(3): 245-249 (in Chinese with English abstract)

[20]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, MorishimaH, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13

[21]Beaseley J O. The production of polyploids in Gossypium. J Hered, 1940, 31: 39-48

[22]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Zhou B-L(周宝良), Ying M-C(应苗成), Shen D-Z(沈端庄), Liu G-L(刘桂玲), Hu Y-X(胡延馨), Xu Y-J(徐英俊), Gu L-M(顾立美), Ni W-C(倪万潮), Chen S(陈松). Studies on the hybrid of Gossypium hirsutum L. and G.anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sin (中国农业科学), 1992, 25(6): 44-51 (in Chinese with English abstract)

[23]Qian S-Y(钱思颖), Zhou B-L(周宝良), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Gu L-M(顾立美), Xu Y-J(徐英俊), Shen X-L(沈新莲). Studies on the interspecific hybrid of G. hirsutum cultivar 86-1 G. armourianum and its use in breeding. Acta Agron Sin (作物学报), 1995, 21(5): 592-597 (in Chinese with English abstract)

[24]Stewart J M. Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable G A, Forrester N W, eds. Challenging the future: Proceedings of the World Cotton Research Conference-1. Brisbane, Australia: CSIRO, 1995. pp 313-327

[25]Shen X-L(沈新莲), Zhang X-G(张香桂), Zhang B-L(张保龙), Yang Y-W(杨郁文), Yao S(姚姝), Ni W-C(倪万潮). Genetic analysis for introgression gene of yellow petal from G. amourianum to G. hirsutum and its effect on other traits. Cotton Sci (棉花学报), 2007, 19(1): 78-80 (in Chinese with English abstract)

[26]Brown M S, Menzel M Y. Polygenomic hybrids in Gossypium: I. Cytology of hexaploids, pentaploids and hexaploid combinations. Genetics, 1952, 37: 242-263

[27]Meyer V G. Interspecific cotton breeding. Econ Bot, 1974, 28: 56-60

[28]Brubaker C L, Brown A H D, Stewart J M, Kilby M J, Grace J P. Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica, 1999, 108: 199-213

[29]Culp T W, Harrell D C. Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.). Crop Sci, 1973, 13, 686-689

[30]Zhou B-L(周宝良), Shen X-L(沈新莲), Chen S(陈松), Zhang X-G(张香桂) Zhang Z-L(张震陵). Study on effect of three wild species for improving fiber quality in upland cotton (Gossypium hirsutum L). Cotton Sci (棉花学报), 2003, 15(1): 22-25 (in Chinese with English abstract)

[31]Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G, Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generation. Crop Sci, 2005, 45: 123-140

[32]Zhang Z S, Xiao Y H, Luo M, Li X B Luo X Y Hou L, Li D M, Pei Y. Construction of a genetic linkage map QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99

[33]He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum ×Gossypium baebadense. Euphytica, 2007, 153, 181-197

[34]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396

[35]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Yu J Z, Kohel R J, Zhang T Z. Molecular mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181

[36]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica, 2007, 155: 371-380

[37]Qin Y-S(秦永生), Ye W-X(叶文雪), Liu R-Z(刘任重), Zhang T-Z(张天真), Guo W-Z(郭旺珍). QTL mapping for fiber quality properties in upland cotton (Gossypium hirsutum L.). Sci Agric Sin (中国农业科学), 2009, 42(12): 4145-4154 (in Chinese with English abstract)

[38]Wang J(王娟), Guo W-Z(郭旺珍), Zhang T-Z(张天真). QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin (作物学报), 2007, 33(12): 1915-1921 (in Chinese with English abstract)

[39]Zhang Z S, Hu M C Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49-61

[40]Hu W-J(胡文静), Zhang X-Y(张晓阳), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Molecular tagging and source analysis of QTL for elite fiber quality in upland cotton. Acta Agron Sin (作物学报), 2008, 34(4): 578-586 (in Chinese with English abstract)

[41]Chen L(陈利), Zhang Z-S(张正圣), Hu M-C(胡美纯), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Zheng L(郑靓), Zheng F-M(郑风敏), Ma J(马靖). Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossupium hirsutum L.). Acta Agron Sin (作物学报), 2008, 34(7): 1199-1205 (in Chinese with English abstract)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[11] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Full text



No Suggested Reading articles found!