欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 800-807.doi: 10.3724/SP.J.1006.2012.00800

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子干草饲用品质性状变异及相关性分析

智慧1,牛振刚1,3,贾冠清1,柴杨1,李伟2,王永芳2,李海权2,陆平1,白素兰3,刁现民1,*   

  1. 1中国农业科学院作物科学研究所, 北京100081;2河北省农林科学院谷子研究所, 河北石家庄050031;3首都师范大学生命科学学院, 北京100037
  • 收稿日期:2011-10-25 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 刁现民, E-mail: xmdiao@yahoo.com.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系专项(CARS07-12.5-A02)和中国农业科学院作物科学研究所基本科研业务费资助。

Variation and Correlation Analysis of Hay Forage Quality Traits of Foxtail Millet (Setaria italica L.)

ZHI Hui1, NIU Zhen-Gang1,3, JIA Guan-Qing1, CHAI Yang1, LI Wei2, WANG Yong-Fang2, LI Hai-Quan2, LU Ping1, BAI Su-Lan3,DIAO Xian-Min1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China; 3 College of Life Sciences, Capital Normal University, Beijing 100037, China
  • Received:2011-10-25 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 刁现民, E-mail: xmdiao@yahoo.com.cn

摘要: 谷子是重要的饲草作物, 但其饲草品质性状研究滞后制约了谷子饲草品种培育和栽培。本研究对47个谷子品种在我国高寒农牧地区栽培的饲用干草品质性状进行了系统测定。结果表明, 供试材料粗蛋白含量的变异范围为5.42%~12.45%, 变异系数为14.25;粗脂肪含量的变异范围为0.64%~1.43%, 变异系数为15.84;粗灰分含量的变异范围为8.50%~15.60%, 变异系数为13.71;总磷含量的变异范围为0.10%~0.32%, 变异系数为20.00;总钙含量的变异范围为0.27%~0.67%, 变异系数为20.00。粗纤维、无氮浸出物和水分含量表现出较小的变异。主成分分析表明, 影响谷子饲草品质的主要性状是粗纤维、粗灰分、粗蛋白和无氮浸出物, 粗蛋白与粗纤维和无氮浸出物均为负相关。综合表明, Li05-569、饿死驴、系295和红根谷是品质性状综合表现优良的品种。

关键词: 谷子, 饲草, 粗蛋白, 粗纤维

Abstract: Lack of information about hay forage quality of foxtail millet inbred lines has limited the development of foxtail millet as a forage crop. In this study, forty-seven foxtail millet landraces and improved cultivars were planted in north featured area of China for forage quality identification, frequency distributions of eight quality-related traits were characterized and outstanding lines were screened based on these results. For all the forty-seven accessions, rang of crude protein (CP) content was 5.42%–12.45%, with a CV of 14.25; rang of crude fat (CFa) content was 0.64%–1.43%, with a CV of 15.84; rang of crude ash (CA) content was 8.5%–15.6%, with a CV of 13.71; rang of total phosphorus (TP) content was 0.10%–0.32%, with a CV of 20; range of calcium (Ca) content was 0.27%–0.67%, with a CV of 20. Crude fiber (CF) content, nitrogen free extract (NFE) content and moisture (MC) content had a lower CV. According to our comprehensive analysis on these data, four lines Li05-569, Esilv, Xi295 and Honggengu were selected as the candidates for forage variety breeding of foxtail millet in the future

Key words: Foxtail millet, Hay forage, Crude protein, Crude fiber

[1]Gao G-R(高国仁). Origin and history of Chinese foxtail millet (中国谷子起源与发展简史). In: Li Y-M(李荫梅) ed. Breeding Science of Foxtail Millet (谷子育种学). Beijing: China Agricultural Press, 1997. pp 22–43 (in Chinese)

[2]Diao X-M(刁现民). Industry and developmental perspectives of Chinese Foxtail millet (中国谷子产业与未来发展). In: Diao X-M(刁现民) ed. Chinese Industry and Technical System of Foxtail Millet (中国谷子产业与产业技术体系). Beijing: China Agricultural Sciences and Technology Press, 2011. pp 20–30 (in Chinese)

[3]Curtis J J, Brandon J F, Weihing R M. Foxtail millet in Colorado. Colorado Exp Station Bull, 1940, 461: 3–12

[4]McCartney D, Fraser J, Ohama A. Potential of warm-season annual forages and Brassica crops for grazing: A Canadian Review. Can J Anim Sci, 2009, 89: 431–440

[5]Boshong D L, Peeper T F. Potential for using no-till to increase forage and grain yields of winter wheat. 26th Southern Conservation Tillage Conference, 2004, pp 188–192

[6]Saseendran S A, Nielsen D C, Lyon D J, Maa L, Felter D G, Baltensperger D D, Hoogenboom G, Ahuja L R. Modeling responses of dryland spring triticale, proso millet and foxtail millet to initial soil water in the High Plains. Field Crops Res, 2009, 113: 48–63

[7]Wu B-H(吴宝华), Wang W-B(王伟斌), Sun L-Z(孙连震), Zhang Z-Y(张子仪). Composition analysis of stem nutrition in different varieties of spiked millet. Inner Mongolia Agric Sci Technol (内蒙古农业科技), 2005, 6: 33–34 (in Chinese with English abstract)

[8]Braunwart K, Putnam D, Fohner G. Alternative annual forages-now and in the future. In: Proceedings of 31th Califonia Alfalfa and Forage Symposium, Modesto, CA, 2001, pp 38–51

[9]Munson C L, Whittier J C, Schutz D N, Anderson R L. Reducing annual cow cost by grazing windrowed millet. Prof Anim Sci, 1999, 15: 40–45

[10]Neville B W, Whitted D L, Nyren P E, Lardy G P, Sedivec K K. Evaluation of annuals forages as alternatives to native range as fall-winter forage in south-central North Dakota. In: Proceedings, Western Section, American Society of Animal Science, 2008, 59: 217–220

[11]Zhi H(智慧), Li W(李伟), Niu Z-G(牛振刚), Jia G-Q(贾冠清), Chen B-Z(陈宝珠), Wang Y-F(王永芳), Li H-Q(李海权), Chai Y(柴杨), Diao X-M(刁现民). Primary Report on Straw Characteristics of Foxtail Millet for Hay Production Specific Breeding (饲草专用谷子饲草产量和品质性状鉴定研究初报). In: Diao X-M(刁现民) ed. Chinese Industry and Technical System of Foxtail Millet (中国谷子产业与产业技术体系). Beijing: China Agricultural Sciences and Technology Press, 2011. pp 149–154 (in Chinese)

[12]Zhang L-Y(张丽英). Technology of Feed Analysis and Quality Determine (饲料分析及饲料质量检测技术). Beijing: China Agricultural University Press, 2002. pp 63–70 (in Chinese)

[13]Tang Q-Y(唐启义), Feng M-G(冯明光). DPS Data Processing System for Practical Statistic (实用用统计分析及其DPS处理系统). Beijing: Science Press, 2002. pp 280–311 (in Chinese)

[14]Wang K-P(王克平), Lou Y-J(娄玉杰), Cheng W-G(成文革), Wang J-Z(王金芝). Study on the dynamic variation rule of nutritive substance for Leymus chinensis cv. Jisheng. Pratac Sci (草业科学), 2005, 22(8): 24–27 (in Chinese with English abstract)

[15]Peng Y-M(彭玉梅), Cheng D(程渡), Cui X-Y(崔鲜一). Research on production of living being and development of nutrition on natural leymus. China Herbivores (中国草食动物), 2000, 2(1): 33–34 (in Chinese with English abstract)

[16]Peng Y-M(彭玉梅). Relationship analysis of hydrothermal condition with overground primary net biomass and nutritional dynamics in natural grassland. Meteorol J Inner Mongolia (内蒙古气象), 1996, (4): 25–29 (in Chinese)

[17]Cheng D(程渡), Ma H-L(马鹤林), Ma J(马静), Cui X-Y(崔鲜一), Peng Y-M(彭玉梅). Relationship analysis of biomass and trophic dynamics in natural grass land of guinea grass (III). Forage & Feed (牧草与饲料), 2009, 3(1): 21–22 (in Chinese)

[18]Allen V G, Fontenot J P, Brock R A. Forage systems for production of stocker steers in the upper south. J Anim Sci, 2000, 78: 1973–1982

[19]Svirskis A. Prospects for Non-Traditional Plant Species Cultivated for Forage in Lithuania. Not Bot Hort Agrobot Cluj, 2009, 37: 215–218

[20]May W E, Klein L H, Lafond G P, McConnell J T, Phelps S M. The Suitability of cool-and warm-season annual cereal species for winter grazing in Saskatchewan. Can J Plant Sci, 2007, 87: 739–752

[21]McCartney D, Fraser J, Ohama A. Potential of warm-season annual forages and Brassica crops for grazing: a Canadian review. Can J Anim Sci, 2009, 89: 431–440

[22]Lu H, Zhang J, liu K B, Wu N, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367–7372

[23]Sainju U M, Lenssen A W. Soil nitrogen dynamics under dryland alfalfa and durum-forage cropping sequences. Soil Sci Soc Am J, 2011, 75: 669–677

[24]Felter D G, Lyon D, Nielsen D. Evaluting crops for a flexible summer fallow cropping system. Agron J, 2006, 98: 1570–1517

[25]Neville B W, Lardy G P, Nyren P, Sedivec K K. Evaluating beef cow performance: comparing crested wheatgrass/legume, big bluestem, and foxtail millet in swath grazing. In: Proceedings, Western Section, American Society of Animal Science, 2006, 57: 238–241

[26]Zhang Q, Shen Y, Nan Z, Whish J, Bell L, Bellotti W. Production and nutritive value of alternative annual forage crop options in a rainfed region of western China. In: Dove H, Culvenor R A, eds. Food Security from Sustainable Agriculture. Proceedings of 15th Agronomy Conference, Lincoln, New Zealand, 15–18, November, 2010
[1] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[6] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[7] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[8] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[9] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[10] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[11] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[12] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[13] 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066.
[14] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
[15] 赵庆英, 张瑞娟, 王瑞良, 高建华, 韩渊怀, 杨致荣, 王兴春. 基于名优谷子品种晋谷21全基因组重测序的分子标记开发[J]. 作物学报, 2018, 44(05): 686-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!