欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1286-1294.doi: 10.3724/SP.J.1006.2012.01286

• 耕作栽培·生理生化 • 上一篇    下一篇

高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响

李宗新1,2,3,陈源泉1,王庆成2,3,刘开昌2,3,高旺盛1,*,隋鹏1,*   

  1. 1 中国农业大学循环农业研究中心,北京100193; 2 山东省农业科学院玉米研究所,山东济南250100; 3小麦玉米国家工程实验室,山东济南 250100
  • 收稿日期:2012-02-20 修回日期:2012-04-20 出版日期:2012-07-12 网络出版日期:2012-05-01
  • 通讯作者: 高旺盛, E-mail: wshgao@cau.edu.cn; 隋鹏, Tel: 0531-62737516
  • 基金资助:

    本研究由国家科技支撑计划项目(2011BAD16B15, 2011BAD16B09),农业科技成果转化资金项目(2010GB2C600250)和山东省玉米现代产业技术体系项目资助。

Influence of Planting Density on Root Spatio-Temporal Distribution of Different Types of Maize under High-Yielding Cultivation Conditions

LI Zong-Xin1,2,CHEN Yuan-Quan1,WANG Qing-Cheng2,LIU Kai-Chang2,GAO Wang-Sheng1,*,SUI Peng1,*   

  1. 1 Research Center of Circular Agriculture, China Agricultural University, Beijing 100193, China; 2 Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 National Engineering Laboratory for Wheat and Maize, Jinan 250100, China ?
  • Received:2012-02-20 Revised:2012-04-20 Published:2012-07-12 Published online:2012-05-01
  • Contact: 高旺盛, E-mail: wshgao@cau.edu.cn; 隋鹏, Tel: 0531-62737516

摘要: 以平展大穗型品种鲁单981 (LD981)和紧凑中穗型品种鲁单818 (LD818),比较研究了不同种植密度下根系时空分布动态,以期为玉米品种的选育和高产栽培提供理论依据。结果表明, 随生育进程,2个品种的根系总体积、总表面积、活跃吸收面积与总干重均呈先升后降趋势,多为开花期至乳熟期达最大。随种植密度递增,LD981和LD818的根层数与数量、总体积、总表面积、活跃吸收面积以及水平与垂直方向各分布区域的干重均呈递减趋势,LD981的递减速率明显大于LD818。生育期内,不同种植密度下LD981和LD818的根系干重水平方向0~6 cm、6~12 cm和12~18 cm分布表现为高密度区、中密度区和低密度区; 垂直方向0~20 cm、20~40 cm、40~60 cm和60~80 cm土层分别表现为高密度层、中密度层、低密度层和稀密度层; LD981水平方向0~6 cm范围根系干重所占比例比LD818的低2.96%,6~18 cm则高14.33%,垂直方向0~40 cm土层根系干重所占比例前者比后者高3.71%,40~80 cm土层则低35.97%。本研究说明不同类型玉米品种对根系伸展空间方向和大小的要求存在差异,平展大穗型品种LD981单株根量多,吸收能力强,根系分布较浅,对种植密度递增导致的水平方向空间受限制的反应更为敏感,宜适当增大株距稀植; 紧凑中穗型品种LD818单株根系呈现“横向紧缩,纵向延伸”的特点,更能适应随着种植密度递增导致的水平方向空间受限制的“拥挤”,宜适当减小株距密植。

关键词: 玉米, 种植密度, 根系, 时空分布

Abstract: A field experiment was conducted to compare the influence of planting density onthe root spatio-temporal distribution using two types of maize cultivar (LD981, a planophile massive ear type variety, and LD818, an erectophile middle ear type variety) under high-yielding cultivation conditions. The results indicated that the total root volume (TRV), total root-absorbing area (TRAA), active-absorbing area (AAA), and total root dry weight (TRDW) of the both maize varieties increased at first and then decreased during the growing stages. From the flowing stage to the milking stage, the above parameters reached their maximum values. The number of root layers, root number, TRV, TRAA, AAA, and TRDW decreased with the increase of planting density, but the rate of decrease in LD981 was higher than that in LD818. In the horizontal distribution, 0–6, 6–12, and 12–18 cm from the stem were classified as higher, mid, and lower root density zones, respectively; in the vertical distribution, 0–20, 20–40, 40–60, and 60–80 cm below the ground surface were classified as higher, mid, lower, and thinner root density layers, respectively. In the horizontal distribution, the percentage of root dry weight in 0–6 cm soil from the stem of LD818 was higher (2.96%) than that of LD981, but lower (14.33%) in 6–18 cm soil; in the vertical distribution, the percentage of root dry weight in 0–40 cm soil below the ground surface in LD818 was lower (3.71%) than that in LD981, but higher (14.33%) in 40–80 cm soil. The results of this study suggest that the requirement in root distribution space and orientation is different among different maize varieties. LD981 posses more roots mainly distributing in lower soil layers. LD981 is more sensitive to horizontal restriction owing to higher planting density, and suitable to be planted under lower planting density condition. LD818 shows the root distribution characteristics of “vertical extension and horizontal contraction”, adapting horizontal restriction owing to higher planting density, suitably cultivating under higher planting density condition.

Key words: Maize (Zea mays L.), Planting density, Root, Spatio-temporal distribution

[1]Guo Q-F(郭庆法), Wang Q-C(王庆成), Wang L-M(汪黎明). Chinese Maize Cultivation (中国玉米栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2004. pp 63-69 (in Chinese)

[2]Fitter A H. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: The Hidden Half, 3rd edn. New York: Marcel Dekker Inc, 2002. pp 15-32

[3]Li C-J(李春俭), Peng Y-F(彭云峰), Niu J-F(牛君仿), Ma W(马玮), Yan H-F(闫慧峰), Jiao R-X(焦润兴). Real maize roots in the soil and issues should be considered by study. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(1): 225-231 (in Chinese with English abstract)

[4]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin (中国农业科学), 2001, 34(4): 429-432 (in Chinese with English abstract)

[5]Li J(李杰), Zhang H-C(张洪程), Chang Y(常勇), Gong J-L(龚金龙), Hu Y-J(胡雅杰), Long H-Y(龙厚元), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Sci Agric Sin (作物学报), 2011, 37(12): 2208-2220 (in Chinese with English abstract)

[6]Xiong S-P(熊淑萍), Wang X-C(王小纯), Li C-M(李春明), Ma X-M(马新明), Du S-Y(杜少勇), Zhang Y-W(张营武), Lin S-Z(蔺世召). Responses of the spatial-temporal distribution yield to different ratios of nitrogen sources. Chin J Plant Ecol (植物生态学报), 2011, 35(7): 759-768 (in Chinese with English abstract)

[7]Munoz-Romero V, Benítez-Vega J, López-Bellidoa L, López-Bellido R J. Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron, 20103, 3: 182-187

[8]Wang H, Inukai Y, Yamauchi A. Root development and nutrient uptake. Crit Rev Plant Sci, 2006, 25: 279-301

[9]Mu Z-X(慕自新), Zhang S-Q(张岁岐), Hao W-F(郝文芳), Liang A-H(梁爱华), Liang Z-S(梁宗锁). The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecol Sin (生态学报), 2005, 25(11): 2895-2900 (in Chinese with English abstract)

[10]Li C-H(李潮海), Li S-L(李胜利), Wang Q(王群), Hao S-P(郝四平), Han J-F(韩锦锋). A study on corn root growth and activities at different soil layers with special bulk density. Sci Agric Sin (中国农业科学), 2005, 38(8): 1706-1711 (in Chinese with English abstract)

[11]Yang J-G(杨俊刚), Ni X-H(倪小会), Xu K(徐凯), Xu J-X(许俊香), Cao B(曹兵), Liu B-C(刘宝存). Effects of co-situs application of polymer-coated fertilizers on grain yield, root distribution and soil residual Nmin in summer maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(4): 924-930 (in Chinese with English abstract)

[12]Wang K-J(王空军), Hu C-H(胡昌浩), Dong S-T(董树亭), Liu K-C(刘开昌), Liu C-H(刘存辉). Effect of sulfate supply level on characteristics of N and S metabolism and on root vigor of corn. Chin J Appl Ecol (应用生态学报), 2003, 14(2): 191-195 (in Chinese with English abstract)

[13]Chun L(春亮), Chen F-J(陈范骏), Zhang F-S(张福锁), Mi G-H(米国华). Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(5): 615-619 (in Chinese with English abstract)

[14]Wang K-J(王空军), Zheng H-J(郑洪建), Liu K-C(刘开昌), Zhang J-W(张吉旺), Dong S-T(董树亭), Hu C-H(胡昌浩). Evolution of maize root distribution in space-time during maize varieties replacing in China. Acta Phytoecol Sin (植物生态学报), 2001, 25(4): 472-475 (in Chinese with English abstract)

[15]Wang J-F(王敬锋), Liu P(刘鹏), Zhao B-Q(赵秉强), Dong S-T(董树亭), Zhang J-W(张吉旺), Zhao M(赵明), Yang J-S(杨吉顺), Li G(李耕). Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Sci Agric Sin (中国农业科学), 2011, 44(4): 699-707 (in Chinese with English abstract)

[16]Song R(宋日), Wu C-S(吴春胜), Wang C-J(王成己), Guo J-X(郭继勋). Effects of deep root system on above-ground vegetative growth and yield in maize. J Maize Sci (玉米科学), 2002, 10(2): 63-66 (in Chinese with English abstract)

[17]Liedgens M, Richner W. Relation between maize (Zea mays L.) leaf area and root density observed with minirhizotrons. Eur J Agron, 2001, 15: 131-141

[18]Anderson E L. Corn root growth and distribution as influenced by tillage and nitrogen fertilization. Agron J, 1987, 79: 544-549

[19]Lu W-P(陆卫平), Zhang Q-L(张其龙), Lu J-D(卢家栋), Wang Z(王昭), Zong S-Y(宗寿余). Relationship of root activity to dry matter accumulation and grain yield in maize (Zea mays L.). Acta Agron Sin (作物学报), 1999, 25(6): 718-722 (in Chinese with English abstract)

[20]Chassot A É, Stamp P, Richner W. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant Soil, 2001, 231: 123-135

[21]Liu J-B(刘镜波), Wang X-L(王小林), Zhang S-Q(张岁岐), Zhang R-H(张仁和), Xue J-Q(薛吉全). Effect of organic fertilizer and planting density on root growth and function of maize in dryland. Bull Soil Water Conserv (水土保持通报), 2011, 31(6): 32-41 (in Chinese with English abstract)

[22]Li S-K(李少昆), Liu J-D(刘景德). Roots distribution, weight regulation and their relation with shoot growth of maize under different plant density in field. Maize Sci (玉米科学), 1993, 1(3): 43-49 (in Chinese with English abstract)

[23]Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil, 1994, 2: 267-277

[24]Li P(李鹏), Li Z-B(李占斌), Zhao Z(赵忠). Study of the method for determining sampling number for root investigation. Res Soil Water Conserv (水土保持研究), 2003, 10(1): 146-149 (in Chinese with English abstract)

[25]Zou Q(邹琦). Guide to Plant Physiology (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 62-63 (in Chinese)

[26]E Y-J(鄂玉江), Dai J-Y(戴俊英), Gu W-L(顾慰连). Studies on the relationship between root growth and yield in maize: I. Relationships between the growth and absorption ability of the roots and the growth and development of the above ground parts of maize. Acta Agron Sin (作物学报), 1988, 14(2): 149-154 (in Chinese with English abstract)

[27]Guan J-H(管建慧), Guo X-Y(郭新宇), Wang J-H(王纪华), Liu K-L(刘克礼), Guo X-D(郭晓东). Study on growth and development rule of different parts of maize root. Maize Sci (玉米科学), 2008, 16(3): 124-128 (in Chinese with English abstract)

[28]Wang Q(王群), Li C-H(李潮海), Li Q-Z(李全忠), Xue S(薛帅). Effect of soil compaction on spatio-temporal distribution and activities in maize under different soil types. Acta Ecol Sin (中国农业科学), 2011, 44(10): 2039-2050 (in Chinese with English abstract)

[29]Song H-X(宋海星), Li S-X(李生秀). Effects of root growing space on its absorbing characteristics. Sci Agric Sin (中国农业科学), 2003, 36(8): 899-904 (in Chinese with English abstract)

[30]Dowdy R H, Bidwell A M, Linden D R, Allmaras R R. Corn root distributions as a function of tillage and residue management. Edinburgh, Scotland: ISTRO, 11-15th, July, 1988. pp 55-60

[31]Zhao B-Q(赵秉强), Zhang F-S(张福锁), Li Z-J(李增嘉), Li F-C(李凤超), Shen J-X(史春余),Zhang J(张骏), Zhang X-C(张新春), Shen J-X(申加祥), Pan H-J(潘海军), Zhao J-M(赵甲美). Vertical distribution and its change of root quantity & activity of crops in the “winter wheat//early spring maize/summer maize” cropping system: II. The vertical distribution and its changes of root quantity & activity of the early spring inter-planted maize. Acta Agron Sin (作物学报), 2001, 27(6): 974-979 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!