作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1791-1801.doi: 10.3724/SP.J.1006.2012.01791
代程,张锦鹏*,武晓阳,杨欣明,李秀全,刘伟华,高爱农*,李立会
DAI Cheng,ZHANG Jin-Peng*, WU Xiao-Yang,YANG Xin-Ming,LI Xiu-Quan,LIU Wei-Hua,GAO Ai-Nong*,LI Li-Hui
摘要:
小麦-冰草[Agropyron cristatum (L. ) Gaertn.] 6P附加系普冰4844-12具有多粒等可用于小麦改良的优异基因。为高效率检测由小麦-冰草6P附加系衍生的易位系和渐渗系,以普冰4844-12及其亲本普通小麦Fukuhokomugi和冰草Z559 (2n=4x=28, PPPP)为材料,通过对冰草转录组测序获得的EST序列设计的P基因组EST分子标记引物,筛选在普通小麦背景下的6P染色体特异分子标记。结果从1 453对P基因组EST引物中筛选出130对小麦-冰草6P附加系特异标记引物。进而将这些特异标记与NCBI nr蛋白质数据库及小麦EST序列进行了比对,发现4条冰草EST序列的功能注释与抗病、抗逆相关;36条冰草EST与已经定位的小麦EST具有较高的相似性,其中33条(91.67%)位于小麦第6部分同源群染色体。为了进一步验证这些标记的特异性,分别对其中4个具有功能注释的EST标记在中国春等7个普通小麦背景下和随机选择的5个标记在小麦-冰草6P易位系背景下进行了检测,结果证明其确实可用于检测6P染色体。这些冰草6P染色体特异标记的开发为大规模地鉴定小麦-冰草衍生后代中P染色质成分奠定了基础。
[1]Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial triticeae. In: Gustafson G P ed. Gene Manipulation in Plant Improvement. New York: Plenum Press, 1984. pp 209–279[2]Li L-H(李立会), Dong Y-C(董玉琛). Progress in studies of Agropyron Gaertn. Hereditas (Beijing) (遗传), 1993, 15(1): 45–48 (in Chinese)[3]Jauhar P P. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploid crested wheatgrass (Agropyron cristatum). Hereditas, 1992, 116: 107–109[4]Li L H, Dong Y S. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. Theor Appl Genet, 1991, 81: 312–316[5]White W J. Intergeneric crosses between Triticum and Agropyron. Sci Agric, 1940, 21: 198–232[6]Smith D. Intergeneric hybridization of cereals and other grasses. J Agric Res, 1942, 64: 33–47[7]Chen Q, Jahier J, Cauderon Y. Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum. Genome, 1990, 33: 663–667[8]Li M, Fowler A D. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33: 581–584[9]Ahmad F, Comeau A. A new intergeneric hybrid between Triticum aestivum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-locus Activity. Plant Breed, 1991, 106: 275–283[10]Abdul M K, Roldan S, Lesley A S, Farooq S. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome, 1987, 29: 537–553[11]Chen Q, Jahier J, Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum (L.) Thell and Agropyron cristatum (L.) Gaertn. C R Acad Sci Paris Ser 3, 308:411–416[12]Li L-H(李立会), Dong Y-C(董玉琛), Zhou R-H(周荣华),Li X-Q(李秀全),Li P(李培). Cytogenetics and self-fertility of hybrids Ttiticum aestivum L. and Agropyron cristatum (L.) Gaertn. Acta Genet Sin (遗传学报) 1995, 22(2): 109–115 (in Chinese with English abstract)[13]Li L-H(李立会), Dong Y-C(董玉琛). Cytogenetics and produce of intergeneric hybrids between Triticum aestivum and Agropyron desertorum. Sci Sin (Ser B)(中国科学B辑), 1990, (5): 492–497 (in Chinese)[14]Wu J, Yang X M, Wang H, Li H J, Li L H, Li X Q, Liu W H. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theo Appl Genet, 2006, 114: 13–20[15]Luan Y, Wang X G, Liu W H, Li C Y, Zhang J P, Gao A N, Wang Y D, Yang X M, Li L H. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010, 232: 501–510[16]Chen X-M(陈学明), Li L-H(李立会), Yang X-M(杨欣明), Li X-Q(李秀全), Dong Y-C(董玉琛). Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agric Sin (中国农业科学), 1998, 31(6): 1–5 (in Chinese with English abstract)[17]Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M , Li X Q, Gao A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 1–16[18]Wang W-Q(王文泉), Yang X-M(杨欣明), Li L-H(李立会), Li X-Q(李秀全), Lan H-Y(兰海燕), Zhou X-C(周新成). The molecular idengtification of a set of disomtic wheat-Agropyron alien addition lines and chromosome location of some important genes. Adv Chrom Sci, 2001: 150–156 (in Chinese with English abstract)[19]Wu M, Zhang J, Wang J C, Yang X M, Gao A N, Zhang X K, Liu W H, Li L H. Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica, 2010, 172: 363–372[20]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76[21]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365–386[22]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701–712[23]Marè C, Mazzucotelli E, Crosatti C, Francia E. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol, 2004, 55: 399–416[24]Woodger F J, Gubler F, Pogson B J. A Mak-like kinase is a repressor of GAMYB in barley aleurone. Plant J, 2003, 33: 707–717[25]Madsen L H, Collins N C, Rakwalska M. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Genet Genom, 2003, 269: 150–161[26]Qi Z, Du P, Qian B, Zhuang L, Chen H. Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS•2BL) translocation line. Theor Appl Genet, 2010, 121: 589–597[27]Friebe B, Jiang J, Raupp W J, McIntosh R A. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59–87[28]Hsam S, Lapochkina I, Zeller F. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133: 367–370[29]Friebe B, Cainong J C, Qi L L, Chen P D, Bockus W W, Gill B S. Chromosome engineering and transfer of alien sources for Fusarium head blight resistance in hard red winter wheat. In: Canty S, Clark A, Anderson A, Ellis D, Sanford D, eds. Proceedings of the 2010 National Fusarium Head Blight Forum. Milwaukee, USA: ASAP Printing, 2010. p 17[30]Zou H, Wu Y, Liu H, Lin Z, Ye X. Development and identification of wheat–barley 2H chromosome translocation lines carrying the Isa gene. Plant Breed, 2012, 131: 69–74[31]Zheng D-S(郑殿升), Sheng J-S(盛锦山). Distant crosses of staple crops: a review. Plant Genet Resour (植物遗传资源学报), 2002, 3(1): 55–60 (in Chinese with English abstract)[32]Wang H-G(王洪刚), Liu S-B(刘树兵), Qi Z-J(亓增军), Kong F-J(孔凡晶), Gao J-R(高居荣). Application studies of Elytrigia intermedium in hereditary improvement of wheat. J Shandong Agric Univ (Nat Sci Edn) (山东农业大学学报•自然科学版), 2000, 31(3): 333–336 (in Chinese)[33]Yin D-D(尹冬冬), An D-G(安调过), Li L-H(李立会), Xu H-X (许红星). Application of molecular marker techniques in rye research. Chin J Eco-Agric (中国生态农业学报), 2011, 19(2): 477–483 (in Chinese with English abstract)[34]Cui Z-F(崔志富), Lin Z-S(林志珊), Xin Z-Y(辛志勇), Tang Y-M(唐益苗), Zhang Z-Y(张增艳), Lu Q(卢勤). Identification of wheat-Thinopyrum intermedium telosomic lines resistant to Barley yellow dwarf virus by GISH and STS markers converted from RFLP. Acta Agron Sin (作物学报), 2008, 32(12): 1855–1859 (in Chinese with English abstract)[35]Mayer K F X, Taudien S, Martis M, Simková H. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol, 2009, 151: 496–505[36]Purnhauser L, Bóna L, Láng L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica, 2011, 179: 287–295[37]Zhang J P, Liu T S, Fu J J, Zhu Y, Jia J P, Jun Z, Zhao Y H, Zhang Y, Wang G Y. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics, 2007, 90: 121–131 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|