欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1791-1801.doi: 10.3724/SP.J.1006.2012.01791

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦背景下冰草6P染色体特异EST标记的开发

代程,张锦鹏*,武晓阳,杨欣明,李秀全,刘伟华,高爱农*,李立会   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程,北京100081
  • 收稿日期:2012-04-13 修回日期:2012-06-06 出版日期:2012-10-12 网络出版日期:2012-07-03
  • 通讯作者: 高爱农, E-mail: gaoainong@caas.net.cn, Tel: 010-62176077; 张锦鹏, E-mail: zhangjp@caas.net.cn, Tel: 010-62152938
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA100102)资助

Development of EST Markers Specific to Agropyron cristatum Chromosome 6P in Common Wheat Background

DAI Cheng,ZHANG Jin-Peng*, WU Xiao-Yang,YANG Xin-Ming,LI Xiu-Quan,LIU Wei-Hua,GAO Ai-Nong*,LI Li-Hui   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-04-13 Revised:2012-06-06 Published:2012-10-12 Published online:2012-07-03
  • Contact: 高爱农, E-mail: gaoainong@caas.net.cn, Tel: 010-62176077; 张锦鹏, E-mail: zhangjp@caas.net.cn, Tel: 010-62152938

摘要:

小麦-冰草[Agropyron cristatum (L. ) Gaertn.] 6P附加系普冰4844-12具有多粒等可用于小麦改良的优异基因。为高效率检测由小麦-冰草6P附加系衍生的易位系和渐渗系,以普冰4844-12及其亲本普通小麦Fukuhokomugi和冰草Z559 (2n=4x=28, PPPP)为材料,通过对冰草转录组测序获得的EST序列设计的P基因组EST分子标记引物,筛选在普通小麦背景下的6P染色体特异分子标记。结果从1 453对P基因组EST引物中筛选出130对小麦-冰草6P附加系特异标记引物。进而将这些特异标记与NCBI nr蛋白质数据库及小麦EST序列进行了比对,发现4条冰草EST序列的功能注释与抗病、抗逆相关;36条冰草EST与已经定位的小麦EST具有较高的相似性,其中33条(91.67%)位于小麦第6部分同源群染色体。为了进一步验证这些标记的特异性,分别对其中4个具有功能注释的EST标记在中国春等7个普通小麦背景下和随机选择的5个标记在小麦-冰草6P易位系背景下进行了检测,结果证明其确实可用于检测6P染色体。这些冰草6P染色体特异标记的开发为大规模地鉴定小麦-冰草衍生后代中P染色质成分奠定了基础。

关键词: 小麦, 冰草, P基因组, 小麦-冰草6P附加系, EST特异分子标记

Abstract:

Wheat-Agropyron cristatum (L.) Gaertn. 6P addition line has the characteristics of superior numbers of florets and kernels per spike, which can be used in the improvement of wheat varieties. In this study, we developed EST markers specific to the A. cristatum 6P chromosome using the wheat-A. cristatum 6P disomic addition line 4844-12 (2n=44) and its common wheat parent “Fukuhokomugi” as well as A. cristatum accession Z559 (2n=4x=28, PPPP). PCR primers were designed according to the sequences of ESTs gained by the transcriptome sequencing of A. cristatum. A total of 130 6P-specific molecular markers were developed from 1 453 PCR primers. These specific markers were matched with protein database from NCBI and wheat EST sequence to understand the potential function genes on chromosome 6P and the gene synteny between A. cristatum and common wheat. The results showed that functions of four A. cristatum EST sequences are related to disease and stress resistance. Thirty six A. cristatum EST sequences could be matched with the located wheat EST bin map, in which 33 (91.67%) sequences were located in the sixth homoeologous group. To validate the specificity of these markers, we detected four EST specific markers with functional annotation under different backgrounds of other seven wheat varieties. Five specific markers were selected randomly to detect wheat-A. cristatum 6P translocation lines. The results showed that these specific markers can be used to detect chromosome 6P of A. cristatum in common wheat background, and to bulky select 6P addition lines derived from common wheat and A. cristatum.

Key words: Wheat, Agropyron cristatum, P genome, Wheat-A. cristatum 6P addition line, EST specific molecular markers

[1]Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial triticeae. In: Gustafson G P ed. Gene Manipulation in Plant Improvement. New York: Plenum Press, 1984. pp 209–279



[2]Li L-H(李立会), Dong Y-C(董玉琛). Progress in studies of Agropyron Gaertn. Hereditas (Beijing) (遗传), 1993, 15(1): 45–48 (in Chinese)



[3]Jauhar P P. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploid crested wheatgrass (Agropyron cristatum). Hereditas, 1992, 116: 107–109



[4]Li L H, Dong Y S. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. Theor Appl Genet, 1991, 81: 312–316



[5]White W J. Intergeneric crosses between Triticum and Agropyron. Sci Agric, 1940, 21: 198–232



[6]Smith D. Intergeneric hybridization of cereals and other grasses. J Agric Res, 1942, 64: 33–47



[7]Chen Q, Jahier J, Cauderon Y. Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum. Genome, 1990, 33: 663–667



[8]Li M, Fowler A D. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33: 581–584



[9]Ahmad F, Comeau A. A new intergeneric hybrid between Triticum aestivum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-locus Activity. Plant Breed, 1991, 106: 275–283



[10]Abdul M K, Roldan S, Lesley A S, Farooq S. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome, 1987, 29: 537–553



[11]Chen Q, Jahier J, Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum (L.) Thell and Agropyron cristatum (L.) Gaertn. C R Acad Sci Paris Ser 3, 308:411–416



[12]Li L-H(李立会), Dong Y-C(董玉琛), Zhou R-H(周荣华),Li X-Q(李秀全),Li P(李培). Cytogenetics and self-fertility of hybrids Ttiticum aestivum L. and Agropyron cristatum (L.) Gaertn. Acta Genet Sin (遗传学报) 1995, 22(2): 109–115 (in Chinese with English abstract)



[13]Li L-H(李立会), Dong Y-C(董玉琛). Cytogenetics and produce of intergeneric hybrids between Triticum aestivum and Agropyron desertorum. Sci Sin (Ser B)(中国科学B辑), 1990, (5): 492–497 (in Chinese)



[14]Wu J, Yang X M, Wang H, Li H J, Li L H, Li X Q, Liu W H. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theo Appl Genet, 2006, 114: 13–20



[15]Luan Y, Wang X G, Liu W H, Li C Y, Zhang J P, Gao A N, Wang Y D, Yang X M, Li L H. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010, 232: 501–510



[16]Chen X-M(陈学明), Li L-H(李立会), Yang X-M(杨欣明), Li X-Q(李秀全), Dong Y-C(董玉琛). Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agric Sin (中国农业科学), 1998, 31(6): 1–5 (in Chinese with English abstract)



[17]Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M , Li X Q, Gao A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 1–16



[18]Wang W-Q(王文泉), Yang X-M(杨欣明), Li L-H(李立会), Li X-Q(李秀全), Lan H-Y(兰海燕), Zhou X-C(周新成). The molecular idengtification of a set of disomtic wheat-Agropyron alien addition lines and chromosome location of some important genes. Adv Chrom Sci, 2001: 150–156 (in Chinese with English abstract)



[19]Wu M, Zhang J, Wang J C, Yang X M, Gao A N, Zhang X K, Liu W H, Li L H. Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica, 2010, 172: 363–372



[20]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76



[21]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365–386



[22]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701–712



[23]Marè C, Mazzucotelli E, Crosatti C, Francia E. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol, 2004, 55: 399–416



[24]Woodger F J, Gubler F, Pogson B J. A Mak-like kinase is a repressor of GAMYB in barley aleurone. Plant J, 2003, 33: 707–717



[25]Madsen L H, Collins N C, Rakwalska M. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Genet Genom, 2003, 269: 150–161



[26]Qi Z, Du P, Qian B, Zhuang L, Chen H. Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS•2BL) translocation line. Theor Appl Genet, 2010, 121: 589–597



[27]Friebe B, Jiang J, Raupp W J, McIntosh R A. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59–87



[28]Hsam S, Lapochkina I, Zeller F. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133: 367–370



[29]Friebe B, Cainong J C, Qi L L, Chen P D, Bockus W W, Gill B S. Chromosome engineering and transfer of alien sources for Fusarium head blight resistance in hard red winter wheat. In: Canty S, Clark A, Anderson A, Ellis D, Sanford D, eds. Proceedings of the 2010 National Fusarium Head Blight Forum. Milwaukee, USA: ASAP Printing, 2010. p 17



[30]Zou H, Wu Y, Liu H, Lin Z, Ye X. Development and identification of wheat–barley 2H chromosome translocation lines carrying the Isa gene. Plant Breed, 2012, 131: 69–74



[31]Zheng D-S(郑殿升), Sheng J-S(盛锦山). Distant crosses of staple crops: a review. Plant Genet Resour (植物遗传资源学报), 2002, 3(1): 55–60 (in Chinese with English abstract)



[32]Wang H-G(王洪刚), Liu S-B(刘树兵), Qi Z-J(亓增军), Kong F-J(孔凡晶), Gao J-R(高居荣). Application studies of Elytrigia intermedium in hereditary improvement of wheat. J Shandong Agric Univ (Nat Sci Edn) (山东农业大学学报•自然科学版), 2000, 31(3): 333–336 (in Chinese)



[33]Yin D-D(尹冬冬), An D-G(安调过), Li L-H(李立会), Xu H-X (许红星). Application of molecular marker techniques in rye research. Chin J Eco-Agric (中国生态农业学报), 2011, 19(2): 477–483 (in Chinese with English abstract)



[34]Cui Z-F(崔志富), Lin Z-S(林志珊), Xin Z-Y(辛志勇), Tang Y-M(唐益苗), Zhang Z-Y(张增艳), Lu Q(卢勤). Identification of wheat-Thinopyrum intermedium telosomic lines resistant to Barley yellow dwarf virus by GISH and STS markers converted from RFLP. Acta Agron Sin (作物学报), 2008, 32(12): 1855–1859 (in Chinese with English abstract)



[35]Mayer K F X, Taudien S, Martis M, Simková H. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol, 2009, 151: 496–505



[36]Purnhauser L, Bóna L, Láng L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica, 2011, 179: 287–295



[37]Zhang J P, Liu T S, Fu J J, Zhu Y, Jia J P, Jun Z, Zhao Y H, Zhang Y, Wang G Y. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics, 2007, 90: 121–131

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!