欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1802-1809.doi: 10.3724/SP.J.1006.2012.01802

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜不同发育时期株高QTL的动态分析

谢田田1,2,陈玉波3,2,黄吉祥2,张尧锋2,徐爱遐4,陈飞2,倪西源2,赵坚义2,*   

  1. 1浙江师范大学化学与生命科学学院,浙江金华321000;2浙江省农业科学院作物与核技术利用研究所,浙江杭州 310021;3杭州师范大学生命与环境科学学院,浙江杭州 310036;4 西北农林科技大学,陕西杨凌 712100
  • 收稿日期:2012-03-04 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 赵坚义, E-mail: jyzhao3@yahoo.com, Tel: 0571-86403406
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A104), 浙江省科技厅重大专项(2011C12005)和浙江省基金重点项目(Z3100592)资助。

Dynamic Analysis of QTL for Plant Height of Rapeseed at Different Developmental Stages

XIE Tian-Tian1,2, CHEN Yu-Bo3,2, HUANG Ji-Xiang2, ZHANG Yao-Feng2, XU Ai-Xia 4, CHEN Fei2, NI Xi-Yuan2, and ZHAO Jian-Yi2,*   

  1. 1 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China; 2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; 4 College of Agronomy, Northwest Agricultural and forestry University, Yangling 712100, China
  • Received:2012-03-04 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 赵坚义, E-mail: jyzhao3@yahoo.com, Tel: 0571-86403406

摘要:

利用新版SG遗传图谱和282个SG-DH株系在中国西安、杭州和德国哥廷根3个生长环境下8个发育时期测定的株高数据,运用WinQTLCart2.5复合区间作图法以及结合条件遗传分析方法对其进行静态和动态QTL分析。结果显示, 来自品种Gaoyou等位基因在PHA3PHC6两个QTL上同时存在时,可降低株高约20 cm;而当植株整合来自冬性品种Sollux的PHA9PHC1和来自半冬性品种Gaoyou的PHA1PHA3PHC6时,株高可相应下降40 cm;环境对株高QTL的作用机理影响不大,但不同QTL的基因表达模式不同,存在来自双亲之一的等位基因控制株高和双亲等位基因在不同生长时期交替控制株高两种情况;通常株高QTL在中后期才能被检测到,但基因多在生长最为旺盛的短时期内表达,符合基因表达在先,性状表现在后的规律。解析株高性状在不同发育时期基因的累加效应和特定时段内的净表达效应,对克隆油菜株高基因和指导生产实践都将提供富有价值的科学信息和理论依据。

关键词: 油菜, 株高, 发育时期, 静态QTL, 动态QTL

Abstract:

The main objective of this study was to explore the genetic control mechanism of plant height in rapeseed and to reveal its dynamic gene expression in specific growing period. Taking advantage of the updated SG map, we determined phenotypic data of plant height from 282 SG-DH lines in three environments and eight development stages, and analyzed both static and dynamic quantitative trait locus (QTL) with unconditional and conditional mapping approach. The results showed that when alleles from Gaoyou existed in two major QTLs PHA3 and PHC6 synchronously, the plant height could decrease about 20 cm; when alleles of plant height came from Sollux in PHA9 and PHC1, and Gaoyou in PHA1, PHA3 and PHC6, the plantsfell 40 cm in height. The mechanism of QTL for plant height was less affected by environment, but various QTLs showed difference in gene expression patterns: plant height was dominated by alleles from one of parents or from two parents by turns at different stages. In general, the QTL for plant height could be detected from the middle to late stages, while the gene expression appeared shortly and only during the most active growing period, in congruent with the rule of “trait appearance goes after genetic expression”.

Key words: Brasscia napus L., Plant height, Developmental stage, Static QTL, Dynamic QTL

[1]Becker H C, Loptien H, Robblen G. Breeding of Brassica: An overview In: Gomez-Campo C, ed. Biology of Brassica coenospecies. Amsterdam: Elsevier, Science BV, 1999. pp 413–460



[2]Liu H-S(刘后利). Practical Rapeseed Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 256–260, 538–539 (in Chinese)



[3]Islam N, Evans E J. Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theor Appl Genet, 1994, 88: 530–534



[4]Buzza G C. Brassica oilseed: Production and Utilization. In: Kimber D, McGregor D I, eds. Plant Breeding. Cambridge: University Press, 1995. pp 153–175



[5]Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 1999, 153: 949–964



[6]Mei D-S(梅德圣). Mapping QTLs of Plant Height and Flowering Time and Identification of Molecular Markers for Yellow Seed Trait in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2004 (in Chinese with English abstract)



[7]Udall J A, Quijada P A, Lambert B, Osborn T C. Identification of alleles from unadapted germplasm affecting seed yield and other quantitative traits in hybrid spring oilseed Brassica napus L. Theor Appl Genet, 2006, 113: 597–609



[8]Quijada P A, Udall J A, Lambert B, Osborn T C. Identification of genomic regions from winter germplasm that affect seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.). Theor Appl Genet, 2006, 113: 549–561



[9]Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849–858



[10]Gao B-J(高必军). Cloning of the napin Gene Promoter and Preliminary QTL of Some Agronomical Import Traits in Brassica napus. PhD Dissertation of Sichuan Agricultural University, 2007. pp 1–105 (in Chinese with English abstract)



[11]Wang F(王峰). Genetic Linkage Map Construction and QTL Analysis of Important Agronomic and Quality Traits in Rapeseed (Brassica napus L.). PhD Dissertation of Hunan Agricultural University, 2009. pp 1–60 (in Chinese with English abstract)



[12]Henderson C R. A simple method to account for selected base populations. J Dairy Sci, 1988, 71: 3399–3404



[13]Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633–1639



[14]Wu W-R(吴为人), Li W-M(李维明), Lu H-R(卢浩然). Strategy of dynamic mapping of quantitative trait loci. J Biomathem (生物数学学报), 1997, 12(5): 490–495 (in Chinese with English abstract)



[15]Yan J, Zhu J, He C, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150: 1257–1265



[16]Yang G, Xing Y, Li S, Ding J, Yue B, Deng K, Li Y, Zhu Y. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas, 2006, 143: 236–245



[17]Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011, 12: 1517–1536



[18]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Shi Y-G(石永刚), Li J-S(李建生), Zheng Y-L(郑用琏). Dynamic analysis of QTL for plant height at different developmental stages in maize. Chin Sci Bull (科学通报), 2003, 48(18): 1959–1964 (in Chinese)



[19]Sun D-S(孙德生), Li W-B(李文滨), Zhang Z-C(张忠臣), Chen Q-S(陈庆山), Yang Q-K(杨庆凯). Analysis of QTL for plant height at different developmental stages in soybean. Acta Agron Sin (作物学报), 2006, 32(4): 509–514 (in Chinese with English abstract)



[20]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33–38



[21]Zhao J Y, Becker H C, Zhang D Q, Zhang Y, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci, 2005, 45: 51–59



[22]Zhao J Y, Huang J X, Chen F, Xu F, Ni X Y, Xu H M, Wang Y L, Jiang C C, Wang H, Xu A X, Huang R Z, Li D R, Meng J L. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet, 2012, 124: 407–421



[23]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468



[24]Foisset N, Delourme R, Barret P, Renard M. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet, 1995, 91: 756–761



[25]Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet, 2010, 121: 249–258



[26]Zeng X, Zhu L, Chen Y, Qi L, Pu Y, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Identification, fine mapping and characterization of a dwarf mutant (bnaC.dwf) in Brassica napus. Theor Appl Genet, 2011, 122: 421–428

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[8] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[11] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[12] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[13] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[14] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[15] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!