欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1810-1817.doi: 10.3724/SP.J.1006.2012.01810

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用于区别不同棉花品种基因组特征的微卫星位点筛选

赵亮,蔡彩平,梅鸿献,郭旺珍*   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室 / 教育部杂交棉创制工程研究中心,江苏南京210095
  • 收稿日期:2011-12-08 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由农业部农产品质量安全监管(种子管理)项目资助。

Screening of Microsatellite Loci for Identifying Genome Barcoding of Cotton Cultivars

ZHAO Liang,CAI Cai-Ping,MEI Hong-Xian,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-12-08 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要:

保守性强、重复性好、多态性高的微卫星位点可被有效用于构建作物DNA条形码。选取目前生产上主要推广种植、代表不同来源系统的12个棉花品种作为微卫星位点筛选材料,参考我室构建的四倍体栽培棉种种间高密度遗传图谱信息,从376对覆盖全基因组的SSR引物中,筛选出51对引物可扩增出带型清晰且多态性高的微卫星位点。这些引物在12个供试品种中共产生155个等位位点,每对引物揭示的等位基因位点在2~7之间,平均值为3.04。参照微卫星位点的染色体定位和多态信息,在每条染色体上选择一个多态性相对高的SSR位点,其相应的26对SSR引物被推荐为构建棉花品种DNA条形码的一套首选引物,并初步应用于12个品种的DNA条形码编制。其余25对引物作为候选引物。使用该套引物扩增出的微卫星位点可用于大量棉花品种DNA条形码构建,为棉花品种真实性和纯度的分子鉴定奠定基础。

关键词: 棉花, 品种, 微卫星位点, DNA条形码

Abstract:

Microsatellites or simple sequence repeats (SSRs) loci with high information content, reproducibility and locus specificity can be used effectively to construct DNA barcode in plant. In this study, 12 cotton cultivars derived from different germplasm pedigrees and planted widely in three ecological cotton growing areas were selected to screen the SSR loci with high polymorphism. Based on our newly updated high-density genetic linkage map from G. hirsutum × G. barbadense BC1 mapping population, we selected 51 primer pairs with clear amplification products and high polymorphism from 376 genome-wide SSR primer pairs. In total, 155 polymorphic loci in 12 cultivars were produced by using the selected 51 primer pairs. Alleles ranging from two to seven with an average of 3.04 were detected by each SSR primer pair. Of them, 26 SSR primer pairs, which amplified SSR loci were tagged on corresponding 26 chromosomes in cultivated tetraploid cotton species, were recommended as first selected primer pairs to establish DNA barcode of cotton cultivars, and other 25 SSR primer pairs could be used as candidate primer pairs. DNA barcodes of 12 cultivars were further constructed effectively using these microsatellite loci with high polymorphism. In the future, these microsatellite loci can be used to construct DNA barcode for a large number of cotton varieties, and applied effectively in the identification of genuineness and purity in cotton cultivar seeds.

Key words: Cotton, Cultivars, Microsatellite loci, DNA barcode

[1]Liu X-L(刘新龙), Ma L(马丽), Chen X-K(陈学宽), Ying X-M(应雄美), Cai Q(蔡青), Liu J-Y(刘家勇), Wu C-W(吴才文). Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agron Sin (作物学报), 2010, 36(2): 202−210 (in Chinese with English abstract)



[2]Kuang M(匡猛), Yang W-H(杨伟华), Xu H-X(许红霞), Wang Y-Q(王延琴), Zhou D-Y(周大云), Feng X-A(冯新爱) Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in china. Sci Agric Sin (中国农业科学), 2011, 44(1): 20−27 (in Chinese with English abstract)



[3]Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet, 1997, 13: 74–78



[4]Röder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Genome, 1998, 41: 278–283



[5]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023



[6]Yan J-W(颜静宛), Tian D-G(田大刚), Xu Y(许彦), Wang F(王锋). Constructing SSR molecular database for identity system of hybrid rice parents. Fujian J Agric Sci (福建农业学报), 2011, 26( 2): 148−152 (in Chinese with English abstract)



[7]Zhao X-Y(赵新燕), Huang L(黄莉), Ren X-P(任小平), Jiang H-F(姜慧芳), Chen Y-N(陈玉宁). Establishment of DNA fingerprint identity of arachis species with high oil content. Acta Agric Boreali-Sin (华北农学报) 2010, 25(6): 64−70 (in Chinese with English abstract)



[8]Ai C-X(艾呈祥), Zhang L-S(张力思), Wei H-R(魏海蓉), Yuan K-J(苑克俊), Jin S-N(金松南), Liu Q-Z(刘庆忠). Construction of molecular fingerprinting database for sweet cherry using SSR markers. Chin Agric Sci Bull (中国农学通报), 2007, 23(5): 55–58 (in Chinese with English abstract)



[9]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom, 2008, 9: 313



[10]Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389–417



[11]Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167–175



[12]Frelichowski J E Jr, Palmer M B, Main D, Tomkins J P, Cantrell R G, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Gen Genom, 2006, 275: 479–491



[13]Wu Y-T(武耀廷), Zhang T-Z(张天真), Yin J-M(殷剑美). Genetic diversity detected by DNA markers and phenotypes in upland cotton. J Gen Genom (遗传学报), 2001, 28(11): 1040–1050 (in Chinese with English abstract)



[14]Zhu L-F(朱龙付), Zhang X-L(张献龙), Nie Y-C(聂以春). Analysis of genetic diversity in upland cotton (Gossypium hirsutum L.) Cultivars from China and foreign countries by RAPDs and SSRs. J Agric Biotechnol (农业生物技术学报), 2003, 11(5): 450–455 (in Chinese with English abstract)



[15]Liu S, Cantrell R G, McCarty J C, Stewart J M. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci, 2000, 40: 1459–1469



[16]Zhao J-R(赵久然), Wang F-G(王凤格), Guo J-L(郭景伦), Chen G(陈刚), Liao Q(廖琴), Sun S-X(孙世贤), Chen R-M(陈如明), Liu L-Z(刘龙洲). Series of research on establishing DNA fingerprint pool of Chinese new maize cultivars: II. Confirmation of a set of SSR core primers pairs. J Maize Sci (玉米科学), 2003, 11(2): 3–5 (in Chinese with English abstract)



[17]Huang Z-K(黄滋康). Cotton Vatieties and Their Genealogy in China (revised and enlarged edition)[中国棉花品种及其系谱(修订本)]. Beijing: China Agriculture press, 2007 (in Chinese)



[18]Cotton Institute of Chinese Academy of Agriculture Sciences (中国农业科学院棉花研究所). Flora of Cotton Varieties in China (1978–2007)[中国棉花品种志(1978–2007)]. Beijing : China Agriculture Science Technology Press, 2009 (in Chinese)



[19]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[20]Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267–269 (in Chinese with English abstract)



[21]Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166–1174



[22]Reddy O U K, Pepper A E, Abdurakhmonov I, Saha S, Jenkins J N, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci, 2001, 5: 103–113



[23]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genom, 2004, 272: 308–327



[24]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Gen Genom, 2005, 274: 428–441



[25]Song X L, Wang K, Guo W Z, Zhang J, Zhang T Z. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. × G. barbadense L. Genome, 2005, 48: 378–390



[26]Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430–439



[27]Yu X-Y(于新艳), Wang F-G(王凤格), Zhao J-R(赵久然), Wang X(王玺), Yi H-M(易红梅), Wang L(王璐), Guo J-L(郭景伦), Kuang M(匡猛), Sun Y-M(孙艳美). Redesigning and optimizing SSR core primer pairs for establishing DNA fingerprinting profiles. Mol Plant Breed (分子植物育种), 2007, 5(3): 443–447 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[7] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[10] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[13] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[14] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[15] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!