欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1847-1855.doi: 10.3724/SP.J.1006.2012.01847

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦胁迫相关基因TaLEAL3的克隆及分子特性分析

闵东红1,2,赵月1,陈阳1,徐兆师2,*,霍冬英1,胡笛1,陈明2,李连城2,马有志2,   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2中国农业科学院作物科学研究所 / 农作物基因资源和基因改良国家重大科学工程 / 农业部作物遗传改良与育种重点开放实验室, 北京 100081
  • 收稿日期:2012-02-13 修回日期:2012-04-20 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 徐兆师, E-mail: xuzhaoshi@yahoo.com.cn, Tel: 010-82106773
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2009ZX08002-008B和2009ZX08009-083B)资助。

Isolation and Molecular Characterization of Stress-Related TaLEAL3 Gene in Wheat

MIN Dong-Hong1,2,ZHAO Yue1,CHEN Yang1,XU Zhao-Shi2,*,HUO Dong-Ying1,HU Di1,CHEN Ming2,LI Lian-Cheng2,MA You-Zhi2   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Beijing 100081, China
  • Received:2012-02-13 Revised:2012-04-20 Published:2012-10-12 Published online:2012-07-27
  • Contact: 徐兆师, E-mail: xuzhaoshi@yahoo.com.cn, Tel: 010-82106773

摘要:

第3组LEA蛋白(late embryogenesis abundant protein)介导干旱、高温、高盐等非生物胁迫响应, 关于普通小麦LEA基因的研究鲜有报道。利用噬菌体原位杂交技术, 从小麦苗期干旱胁迫条件构建的cDNA文库中筛选出LEA蛋白基因TaLEAL3, 其全长750 bp, 编码区长501 bp, 编码166个氨基酸, 含有一个明显的核定位信号区。氨基酸同源性分析发现, TaLEAL3属于第3组LEA蛋白, 序列中含有由11个氨基酸组成的3个不完全重复的基序和α-螺旋的LEA结构。电子定位结果显示, TaLEAL3基因位于4BL、4DL和5AL染色体上, 主要在茎中表达, 而在根中几乎无表达。实时荧光定量PCR分析表明, 在干旱、低温和ABA诱导下, TaLEAL3基因表达量明显增加。在该基因上游1.7 kb序列处, 预测具有启动子的核心序列和增强子序列, 及与干旱和低温等多种逆境胁迫相关的调控序列。本研究为深入分析小麦LEA蛋白基因的功能, 初步解析LEA蛋白的作用机制提供了数据。

关键词: 小麦, LEA蛋白, Real-time PCR, 亚细胞定位, 启动子克隆

Abstract:

Group 3 LEA proteins are proved to mediate plant responses to abiotic stresses such as drought, low temperature, and high salt. However, the LEA genes from common wheat (Triticum aestivum L.) have been rarely studied. We cloned a LEA gene, designated TaLEAL3, from the cDNA library of drought-treated wheat seedlings using phage hybridization in situ. The TaLEAL3 gene is 750 bp in full length and has a 501 bp open reading frame (ORF) encoding 166 amino acids. Based on multiple sequence alignment, TaLEAL3 was found to have the LEA structure characterized by α-helix and three incomplete repeat motifs comprising 11-mer amino acids. The result of electronic mapping showed that TaLEAL3 was located on chromosomes 4BL, 4DL, and 5AL. This gene was mainly expressed in stems but almost not in roots. Besides, the expression of TaLEAL3 was induced markedly by drought, low-temperature, and exogenous abscisic acid. Promoter analysis showed that the core promoter elements and cis-acting elements responding to drought and low-temperature stresses were found in the region of 1.7 kb upstream of TaLEAL3 gene. These results provided experimental data for further studying the function of LEA genes and the mechanism of LEA proteins.

Key words: Wheat, LEA protein, Real-time PCR, Subcellular localization, Promoter isolation

[1]Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: 165–183



[2]Xu Z S, Chen M, Li L C, Ma Y Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86: 969–977



[3]Dure L, Chlan C. Developmental biochemistry of cottonseed embryogenesis and germination: XII. Purification and properties of principal storage proteins. Plant Physiol, 1981, 68: 180–186



[4]Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plant. Plant Cell Environ, 2002, 25: 141–151



[5]Hollung K, Espelund M, Jakobsen K S. Another Lea B19 gene (Group 1 Lea) from barley containing a single 20 amino acid hydrophilic motif. Plant Mol Biol, 1994, 25: 559–564



[6]Dure III L. A repeating 11-mer amino acid motif and plant dessication. Plant J, 1993, 3: 363–369



[7]Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Plant Physiol, 1996, 97: 795–803



[8]Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrance during cold acclimation of wheat. Plant Cell, 1988, 10: 623–638



[9]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 377–403



[10]Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant, 1997, 100: 291–296



[11]Dure III L, Crouch M, Harada J, Ho T H D, Mundy J, Quatrano R, Thomas T, Sung Z R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol, 1989, 12: 475–486



[12]Dure L III. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993, 3: 363–369



[13]Bray E A. Molecular responses to water deficit. Plant Physiol, 1993, 103: 1035–1040



[14]Sunderlíková V, Wilhelm E. High accumulation of legumin and Lea-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.). Protoplasma, 2002, 220: 97–103



[15]Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94: 791–812



[16]Wang B F, Wang Y C, Zhang D W, Li H Y, Yang C P. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. J For Res, 2008, 19: 58–62



[17]Vaseva II, Grigorova B S, Simova-Stoilova L P, Demirevska K N, Feller U. Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol (Stuttg), 2010, 12: 698–707



[18]Kramer D, Breitenstein B, Kleinwächter M, Selmar D. Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol, 2010, 51: 546–553



[19]Baker J, Steele C, Dure L. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol, 1988, 11: 277–291



[20]Borovskii G B, Stupnikova I V, Antipina A I, Downs C A, Voinikov V K. Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J Plant Physiol, 2000, 156: 797–800



[21]Richard S, Morency M, Drevet C, Jouanin L, Séguin A. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol, 2000, 43: 1–10



[22]Franco O L, Melo F R. Osmoprotectants: a plant strategy in response to osmotic stress. Russ J Plant Physiol, 2000, 47: 137–144



[23]Allagulova C R, Gimalov F R, Shakirova F M, Vakhitov V A. The plant dehydrins: structure and putative functions. Biochemistry, 2003, 68: 945–951



[24]Straub P F, Shen Q, Ho T D. Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol, 1994, 26: 617–630



[25]Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249–257



[26]Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res, 2008, 17: 651–663



[27]Dalal M, Tayal D, Chinnusamy V, Bansal K C. Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol, 2009, 139: 137–145



[28]Ried J L, Walker-Simmons M K. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol, 1993, 102: 125–131



[29]Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 118



[30]Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C. New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst, 2000, 75: 179–188



[31]Xu Z S, Xia L Q, Chen Ming, Cheng X G, Zhang R Y, Li L C, Zhao Y X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol, 2007, 65: 719–732



[32]Welin B V, Olson A, Nylander M, Palva E T. Characterization and differential expression of dhn/lea/rab-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol, 1994, 26: 131–144



[33]Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 25: 48–54



[34]Moons A, De Keyser A, Van Montagu M. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene, 1997, 191: 197–204



[35]Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell, 2006, 18: 3535–3547



[36]Abdo M, Hisheh S, Arfuso F, Dharmarajan A. The expression of tumor necrosis factor-alpha, its receptors and steroidogenic acute regulatory protein during corpus luteum regression. Reprod Biol Endocrinol, 2008, 6: 50



[37]Speulman E, Salamini F. GA3-regulated cDNAs from Hordeum vulgare leaves. Plant Mol Biol, 1995, 28: 915–926

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!