欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 21-28.doi: 10.3724/SP.J.1006.2013.00021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位

付央,苑冬冬,胡文静,蔡彩平,郭旺珍*   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室 / 教育部杂交棉创制工程研究中心, 江苏南京210095
  • 收稿日期:2012-05-02 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-15
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金重点项目(30730067)和江苏省“333工程”人才项目资助。

Development of Gossypium barbadense Chromosome 18 Segment Substitution Lines in the Genetic Standard Line TM-1 of Gossypium hirsutum and Mapping of QTLs Related to Agronomic Traits

FU Yang,YUAN Dong-Dong,HU Wen-Jing,CAI Cai-Ping,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-05-02 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-15
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要:

Sub18是以陆地棉遗传标准系TM-1为背景, 含海岛棉3-7918染色体的置换系材料。本研究以TM-1为受体亲本, 置换系Sub18为供体亲本, 借助分子标记辅助选择技术培育了一套以TM-1为背景, 含海岛棉3-7918染色体不同长度片段的置换系。这套置换系由45个株系构成, 78个置换片段。其中27个株系导入单片段, 占总株系的60%; 9个株系导入2个片段, 20%; 9个株系导入3个及以上片段, 20%。导入片段总长度为467.6 cM, 约为该染色体遗传长度的4, 每个株系内被替换的染色体片段长度不完全相同, 平均遗传长度为5.99 cM, 最短的为0.9 cM, 最长的20.35 cM。其中13个株系表现开放花蕾性状, 涉及的最短导入片段长5.05 cM。对TM-1Sub18以及培育的45个导入系进行农艺性状调查和QTL联合定位分析, 鉴定出纤维强度(qFS-C18-1)、整齐度(qFU-C18-1)、马克隆值(qFMi-C18-1)、成熟度(qFMa-C18-1)、皮棉重(qLW-C18-1)、籽指 (qSI-C18-1)和衣分 (qLP-C18-1) 7个加性QTL5个上位性效应QTL。研究结果为进一步精细定位目标QTL、克隆QTL以及重要性状分子设计育种奠定了基础。

关键词: 染色体片段置换系, 分子标记, QTL, TM-1, Sub18, 开放花蕾

Abstract:

Substitution line 18 (Sub18) has the background of genetic standard line of G. hirsutum acc. TM-1 with the 18th chromosome of G. barbadense accession 3-79. In the study, a set of G. barbadense accession 3-79 chromosome 18 segment substitution lines (CSSL18) were developed via molecular marker-assisted selection (MAS), with TM-1 as a recipient parent and Sub18 as a donor. The developed CSSLs consisted of 45 lines and 78 introgressed segments in total. Of them, 27 were introgressed with single segment, accounting for 60% of the total lines; 9 were introgressed with two segments, accounting for 20%; and 9 were introgressed with three or more segments, accounting for 20%. The total length of introgression segments was 467.6 cM, which is 4 times of the genetic length of the chromosome 18. The substituted segment length varied in each line, ranging from the shortest of 0.9 cM to the longest of 20.35 cM, with an average length of 5.99 cM. Further, the opening bud trait was detected in 13 substitution lines, with the shortest introgressed segment of 5.05 cM. Using TM-1, Sub18 and 45 substituted lines as materials, we investigated agronomic traits and carried out QTL tagging by joint positioning analysis. Seven additive effect QTLs for fiber strength (qFS-C18-1), uniformity (qFU-C18-1), micronaire (qFMi-C18-1), maturity (qFMa-C18-1), lint weight (qLW-C18-1), seed index (qSI-C18-1), and lint percentage (qLP-C18-1) and five epistatic effect QTLs were identified, respectively. The results will lay a foundation for the fine mapping and cloning of target QTLs, and the molecular breeding by design for pyramiding multi-traits in cotton.

Key words: Chromosome segment substitution lines, Molecular marker, QTL, TM-1, Sub18, Opening bud

[1]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742



[2]Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162



[3]Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37–44



[4]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin Rice Sci (中国水稻科学), 2003, 17(3): 201–204 (in Chinese with English abstract)



[5]Pan J-J(潘家驹). Cotton Breeding (棉花育种学). Beijing: China Agriculture Press, 1998. pp 60–210 (in Chinese)



[6]Kohel R J, Endrizzi J E, White T G. An evaluation of Gossypium barbadense L. chromosome 6 and 17 in the G. hirsutum L. genome. Crop Sci, 1977, 17: 404–406



[7]Ma J-Z(马家璋), Kohe R J. An evaluation of six substituton lines of Gossypium barbadense chromosome in G. hirsutum. Acta Agron Sin (作物学报), 1983, 9(3): 145–150 (in Chinese with English abstract)



[8]Ren L H, Guo W Z, Zhang T Z. Identification of QTLs affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Bot Sin, 2002, 44(7): 815–820



[9]Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chin Sci Bull, 2008, 53(10): 1512–1517



[10]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012, 124: 1415–1428



[11]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314



[12]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101



[13]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhan H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88:93-104



[14]Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260



[15]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13



[16]Zhu Y-J(朱亚娟), Wang P(王鹏), Guo W-Z(郭旺珍), Zhang T-Z (张天真). Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin (作物学报), 2010, 36(8): 1318–1323 (in Chinese with English abstract)



[17]Endrizzi J E. Linkage analysis of open bud and yellow petal (Y1) in cotton. Genome, 1991, 34: 461–63



[18]Qian N, Zhang X W, Guo W Z, Zhang T Z. Fine mapping of open-bud duplicate genes in homoelogous chromosomes of tetraploid cotton. Euphytica, 2009, 165: 325–331



[19]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L. ) panicle number. Theor Appl Genet, 2001, 103: 104–111



[20]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Geneties, 1996, 143: 1807–1817



[21]Lin Z-X(林忠旭), Feng C-H(冯常辉), Guo X-P(郭小平), Zhang X-L(张献龙). Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton. Sci Agri Sin (中国农业科学), 2009, 42(9): 3036–3047 (in Chinese with English abstract)



[22]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J , Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100



[23]Wang Z-Q(王智权), Liu X(刘喜), Jiang L(江玲), Yang C(杨超), Liu S-J(刘世家), Chen L-M(陈亮明), Zhan H-Q(翟虎渠), Wan J-M(万建民). QTL detection for flag leaf morphological traits of rice in a population of chromosome segment substitution lines. J Nanjing Agri Univ (南京农业大学学报), 2010, 33(6): 1–6 (in Chinese with English abstract)



[24]Ou-Yang L(欧阳恋). Identification, mapping and pyramiding of genes for grain quality based on SSSLs. MS thesis of South China Agricultural University, 2006 (in Chinese with English abstract)



[25]Huang Y-F(黄益峰). Identification, pyramiding and epistasis analysis of the rice grain shape and grain weight QTL. MS thesis of South China Agricultural University, 2006 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[8] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[9] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[10] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[11] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[12] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!