欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 12-20.doi: 10.3724/SP.J.1006.2013.00012

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶面茸毛密度和长度的QTL定位

邢光南,刘泽稀楠,谭连美,岳汉,王宇峰,KIM Hyun-Jee,赵团结,盖钧镒*   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2012-10-09 修回日期:2012-11-14 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB1184, 2010CB1259, 2011CB1093), 国家自然科学基金资助项目(30900902, 31071442), 高等学校博士学科点专项科研基金资助课题(20090097120017), 国家大学生创新性实验计划项目(111030713)和南京农业大学SRT项目(1111A03)资助。

QTL Mapping of Pubescence Density and Length on Leaf Surface of Soybean

XING Guang-Nan,LIU Ze-Xi-Nan,TAN Lian-Mei,YUE Han,WANG Yu-Feng,KIM Hyun-Jee,ZHAO Tuan-Jie,GAI Jun-Yi*   

  1. Soybean Research Institute / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-10-09 Revised:2012-11-14 Published:2013-01-12 Published online:2012-11-14
  • Contact: 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405

摘要:

大豆叶茸毛形态对抗虫性、耐旱性等均有重要作用。本研究利用2个重组自交系群体NJRIKY (KY)NJRIXG (XG)进行叶面茸毛密度和长度的遗传与QTL定位分析。结果表明,2个性状在2个群体中均有大幅度变异,存在不同程度的超亲分离,两者有极显著负相关(r= –0.49–0.62),叶面茸毛密度的遗传率(75.7%~76.8%)高于叶面茸毛长度的遗传率(45.2%~62.9%);检测到2个叶面茸毛密度主效QTL (XG群体的PD1-1KY群体的PD12-1,表型贡献率分别达20.7%21.7%);两群体叶面茸毛密度遗传构成中加性QTL贡献率占20.7%~36.2%,互作QTL只占0%~1.4%,而未定位到的微效QTL所占份额很大,为38.1%~56.1%是以往只用定位程序而未注意遗传构成解析所没有发现的特点;未在KY中检测到叶面茸毛长度加性QTL,互作QTL贡献率也仅4.2%,而微效QTL贡献率达58.7%;但在XG中叶面茸毛长度加性QTL Pl1-1Pl12-1贡献率分别达18.3%22.5%,占主要成分,互作QTL和微效QTL贡献均较小,说明该性状两群体的遗传构成有很大差异。大豆叶面茸毛密度和长度的遗传涉及多个效应不同的基因/QTL

关键词: 大豆, 茸毛密度, 茸毛长度, QTL定位

Abstract:

Soybean pubescences are known to play important roles in resistance to pests and tolerance to drought stress. QTL mapping of leaf pubescence density and length was conducted in recombinant inbred line populations of NJRIKY (KY) and NJRIXG (XG). The results obtained were as follows: (1) There existed great variation and certain transgressive segregation in leaf pubescence density and length among lines; highly significant negative correlations (r= −0.49 and −0.62, respectively) between the two traits were observed; the heritability values for pubescence density ranged from 75.7% to 76.8%, higher than that for pubescence length ranged from 45.2% to 62.9% in the two populations. (2) Two major QTL for pubescence density detected were PD1-1 accounted for 20.7% of phenotypic variation in XG, and PD12-1 contributed 21.7% of phenotypic variation in KY. The genetic constitution of pubescence density was composed of additive QTL (20.7−36.2% of phenotypic variation), epistatic QTL pairs (0−1.4%) and collective unmapped minor QTL (38.1−56.1%) in the two populations. Here the unmapped minor QTL was the most important part for the trait, which was not recognized if only using mapping procedures without the consideration of the total genetic variation among the lines. (3) The phenotypic variation of pubescence length in KY was accounted for by epistatic QTL pairs (4.2%) and collective unmapped minor QTL (58.7%) without additive QTL (0%), while that in XG mainly by additive QTL, including Pl1-1 and Pl12-1 on chromosomes 1 and 12 accounting for 18.3% and 22.5% of phenotypic variation, respectively, with very small contribution by epistatic QTL pair and collective unmapped minor QTL. Therefore, the genetic constitutions of pubescence length in the two populations were different from each other. The genetic mechanisms of leaf pubescence density and length in soybean are complicated and involve many genes/QTL with different effects.

Key words: Soybean [Glycine max (L.) Merr.], Pubescence density, Pubescence length, QTL mapping

[1]Norris D M, Kogan M. Biochemical and morpholgical basis of resistance. In: Maxwell F G, Jennings P R, eds. Breeding Plants Resistant to Insects. New York: John Wiley and Sons, 1980. pp 23–62



[2]Bhattacharyya P K, Ram H H. Pubescence as a plant resistance character against Spilosoma obliqua Walker in the interspecific crosses of soybean. Trop Agric Res Ext, 2001, 4: 20–23



[3]Turnipseed S G. Influence of trichome density on populations of small phytophagous insects on soybean. Environ Entomol, 1977, 6: 815–817



[4]Liu X-Y(刘学义), Li S-X(李淑香). Study on insect-resistance of soybean to red spider. J Shanxi Agric Univ (山西农业大学学报), 1994, 14(4): 391–393 (in Chinese with English abstract)



[5]Khan Z R, Ward J T, Norris D M. Role of trichomes in soybean resistance to cabbage looper, Trichoplusia ni. Entomol Exp Appl, 1986, 42: 109–117



[6]Xing G-N(邢光南), Zhao T-J(赵团结), Wang J-R(王柬人), Gai J-Y(盖钧镒). Variation of leaf pubescence status and its association with resistance to bean pyralid (Lamprosema indicata Fabricius) in soybean. Soybean Sci (大豆科学), 2009, 28(5): 768–773 (in Chinese with English abstract)



[7]Boerma H R, Specht J E. Soybeans: Improvement, Production, and Uses (third edition). Madison, Wisconsin USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2004



[8]Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464–1490



[9]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128



[10]Lee J M, Bush A L, Specht J E, Shoemaker R C. Mapping of duplicate genes in soybean. Genome, 1999, 42: 829–836



[11]Hulburt D J. Identifying Additional Insect Resistance Quantitative Trait Loci in Soybean Using Simple Sequence Repeats. MS Thesis of University of Georgia, 2002



[12]Hulburt D J, Boerma H R, All J N. Effect of pubescence tip on soybean resistance to lepidopteran insects. J Econ Entomol, 2004, 97: 621–627



[13]Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y. Quantitative trait loci mapping of pubescence density and flowering time of insect-resistant soybean (Glycine max L. Merr.). Genet Mol Biol, 2007, 30: 635–639



[14]Oki N, Komatsu K, Sayama T, Ishimoto M, Takahashi M, Takahashi M. Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Breed Sci, 2012, 61: 608–617



[15]Xing G N, Zhou B, Wang Y F, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet, 2012, 125: 859–875



[16]Du W J, Yu D Y, Fu S X. Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.]. Agric Sci China, 2009, 8: 529–537



[17]Lander E S, Green P. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[18]Xing G-N(邢光南), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Application technique of marker grouping and ordering in genetic linkage map construction using Mapmaker/Exp. Acta Agron Sin (作物学报), 2008, 34(2): 217–223 (in Chinese with English abstract)



[19]Xing G-N(邢光南). Identification, Inheritance and QTL Analysis of Resistance of Soybean to Lamprosema Indicata (Fabricius) and Megacopta Cribraria (Fabricius). PhD Dissertation of Nanjing Agricultural University, 2007 (in Chinese with English abstract)



[20]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139



[21]Wang Y-F(王宇峰). Genomic Characterization of Simple Sequence Repeats and Establishment, Integration and Application of High Density Genetic Linkage Map in Soybean. PhD Dissertation of Nanjing Agricultural University, 2009 (in Chinese with English abstract)



[22]Ooijen J W van, Voorrips R E. JoinMap 3.0 Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands: Plant Research International, 2001



[23]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723



[24]Zhao Y-H(赵彦宏), Zhu J(朱军), Xu H-M(徐海明), Yang J(杨剑), Gao Y-M(高用明), Song Y-S(宋佑胜), Shi C-H(石春海), Xing Y-Z(邢永忠). Predicting heterosis of effective panicle number per plant based on QTL mapping in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(4): 350–354 (in Chinese with English abstract)



[25]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC: Statistical Genetics, North Carolina State University, 2001–2005



[26]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!