作物学报 ›› 2013, Vol. 39 ›› Issue (01): 29-33.doi: 10.3724/SP.J.1006.2013.00029
张瑞奇,王秀娥,陈佩度*
ZHANG Rui-Qi,WANG Xiu-E,CHEN Pei-Du*
摘要:
四排穗(four-rowed spike, FRS)性状是超数小穗(supernumerary spikelets, SS)性状的一种类型,表现为在一个穗轴节片上近垂直地着生2个无柄小穗,从而增加了小穗数和穗粒数,对提高产量有一定的潜力。为了解圆锥小麦0880 FRS性状的遗传特征,将0880与正常穗(normal spike, NS)圆锥小麦0879杂交,构建了遗传群体,并对0880 (FRS) × 0879 (NS)与0879 (NS) × 0880 (FRS) F1、F2及F2:3植株的穗部性状进行了调查。结果显示,正反交组合的F1植株均表现为正常穗,F2群体中正常穗与四排穗符合3∶1的分离比例,表明0880的四排穗性状由隐性单基因控制,将该基因定名为frs1;细胞质对frs1无显著影响。采用已定位于普通小麦A组与B组的SSR分子标记并结合混合分组分析法(BSA), 筛选出32个在双亲及F2单株构建的四排穗型池和正常穗型池都具有多态性的SSR分子标记,利用JoinMap4.0软件构建了与frs1连锁的2A染色体11个SSR分子标记遗传图谱,其中SSR标记Xwmc598和Xwmc522位于frs1基因两侧,与该基因的遗传距离分别为4.0 cM和2.4 cM。利用2A染色体缺失系对这11个SSR进行物理定位,Xwmc598和Xwmc522均被定位在2A染色体短臂FL0.00~0.78区域。本研究的结果为frs1基因的精细定位及分子标记辅助选择奠定了基础。
[1]Yang X-Q(杨先泉),Ren Z-L(任正隆). Discussion on classification and inheritance of multispikelet wheat resources. Southwest China J Agric Sci(西南农业学报), 1999, 12(2): 112–119 (in English with Chinese abstract)[2]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pe M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635[3]Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA, 2003, 100: 11765–11770[4]Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298: 1238–1241[5]Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish Xoral meristem identity in rice spikelets. Development, 2003, 130: 3841–3850[6]Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Gene Dev, 1998, 12: 1145–1154[7]Dobrovolskaya O, Martinek P, Voylokov A V, Korzun V, Roeder M S, Boerner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor Appl Genet, 2009, 119: 867–874 [8]Peng Z S, Yen C, Yang J L. Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica, 1998, 103: 109–114[9]Pennell A L, Halloran G M. Inheritance of supernumerary spikelets in wheat. Euphytica, 1983, 32: 767–776[10]Klindworth D L, Williams N D, Joppa L R. Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome, 1990, 33: 515–520 [11]Sears E R. The aneuploids of common wheat. University of Missouri, Columbia, Mo, 1954. pp 3–58[12]Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307[13]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018[14]Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114[15]Klindworth D L, Williams N D, Joppa L R. Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome, 1990, 33: 509–514[16]Yan X-H(闫晓华). Chromosome location of genes for ramified spikelet in bread wheat and the cloning gene of ramosa2. MS Thesis of Northwest Sci-Tech University, 2007 (in Chinese with English abstract)[17]Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C. Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet, 2006, 112: 1073–1085 |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[4] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[5] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[6] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[7] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[8] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[9] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[10] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[11] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
[12] | 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661. |
[13] | 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. |
[14] | 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567. |
[15] | 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655. |
|