欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 29-33.doi: 10.3724/SP.J.1006.2013.00029

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

圆锥小麦四排穗性状基因的遗传及分子标记分析

张瑞奇,王秀娥,陈佩度*   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室 / 细胞遗传研究所,江苏南京 210095
  • 收稿日期:2012-05-29 修回日期:2012-08-15 出版日期:2013-01-12 网络出版日期:2012-10-08
  • 通讯作者: 陈佩度, E-mail: pdchen@njau.edu.cn; Tel: 025-84396026
  • 基金资助:

    本研究由南京农业大学青年科技创新基金项目(KJ2011002)资助。

Inheritance and Mapping of Gene Controlling Four-Rowed Spike in Tetraploid Wheat (Triticum turgidum L.)

ZHANG Rui-Qi,WANG Xiu-E,CHEN Pei-Du*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-05-29 Revised:2012-08-15 Published:2013-01-12 Published online:2012-10-08
  • Contact: 陈佩度, E-mail: pdchen@njau.edu.cn; Tel: 025-84396026

摘要:

四排穗(four-rowed spike, FRS)性状是超数小穗(supernumerary spikelets, SS)性状的一种类型,表现为在一个穗轴节片上近垂直地着生2个无柄小穗,从而增加了小穗数和穗粒数,对提高产量有一定的潜力。为了解圆锥小麦0880 FRS性状的遗传特征,将0880与正常穗(normal spike, NS)圆锥小麦0879杂交,构建了遗传群体,并对0880 (FRS) × 0879 (NS)0879 (NS) × 0880 (FRS) F1F2F2:3植株的穗部性状进行了调查。结果显示,正反交组合的F1植株均表现为正常穗,F2群体中正常穗与四排穗符合31的分离比例,表明0880的四排穗性状由隐性单基因控制,将该基因定名为frs1;细胞质对frs1无显著影响。采用已定位于普通小麦A组与B组的SSR分子标记并结合混合分组分析法(BSA), 筛选出32个在双亲及F2单株构建的四排穗型池和正常穗型池都具有多态性的SSR分子标记,利用JoinMap4.0软件构建了frs1连锁的2A染色体11SSR分子标记遗传图谱,其中SSR标记Xwmc598Xwmc522位于frs1基因两侧,与该基因的遗传距离分别为4.0 cM2.4 cM。利用2A染色体缺失系对这11SSR进行物理定位,Xwmc598Xwmc522均被定位在2A染色体短臂FL0.00~0.78区域。本研究的结果为frs1基因的精细定位及分子标记辅助选择奠定了基础

关键词: 圆锥小麦, 超数小穗, 四排穗, 基因定位

Abstract:

In hexaploid wheat and tetraploid wheat the spike normally bears one spikelet per rachis node, and the appearance of supernumerary spikelets is rare. The morphological character of four-rowed spikes (FRS) is one type of the supernumerary spikelets traits, presenting as two spikelets per rachis node. Thus, the grain yield of FRS plants can be enhanced because the numbers of spikelets and seeds of FRS are increased. To understand the genetic basis of FRS trait, the tetraploid FRS cultivar 0880 was crossed reciprocally to normal-spike (NS) cultivar 0879. The phenotypic evaluation of F1, F2, and F2:3 generations was conducted under greenhouse condition. The results indicated that all F1 plants of the reciprocal crosses showed normal spike, indicating that the FRS trait was recessive to normal spike. In the reciprocal F2 populations, the ratios of normal spike to four-rowed spike were 3:1 according to Chi-square test. This indicates that FRS trait is controlled by a recessive allele without cytoplasm effect, and the data from reciprocal crosses could be pooled. This single recessive allele of the FRS trait was designated frs1. A total of 600 SSR markers located on A and B genomes of common wheat were used to amplify the 0880, 0879, four-rowed pool, and normal-spike pool. Among them, 32 SSR markers showed polymorphism between the four-rowed-spike pool and the normal-spike pool. Eleven markers were identified to be linked with the frs1 locus in a genetic map of chromosome 2A. Markers Xwmc598 and Xwmc522 were located on both sides of frs1 with genetic distances of 4.0 cM and 2.4 cM, respectively. The placement of flanking microsatellite loci into chromosome deletion bin 2AS5 (FL 0.00–0.78) delimited the physical location of frs1 to this region. This map provides a basis for fine mapping of frs1 and marker-assisted selection of FRS trait.

Key words: T. turgidum, Four-rowed spike, Supernumerary spikelet, Genetic mapping

[1]Yang X-Q(杨先泉),Ren Z-L(任正隆). Discussion on classification and inheritance of multispikelet wheat resources. Southwest China J Agric Sci(西南农业学报), 1999, 12(2): 112–119 (in English with Chinese abstract)



[2]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pe M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635



[3]Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA, 2003, 100: 11765–11770



[4]Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298: 1238–1241



[5]Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish Xoral meristem identity in rice spikelets. Development, 2003, 130: 3841–3850



[6]Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Gene Dev, 1998, 12: 1145–1154



[7]Dobrovolskaya O, Martinek P, Voylokov A V, Korzun V, Roeder M S, Boerner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor Appl Genet, 2009, 119: 867–874



[8]Peng Z S, Yen C, Yang J L. Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica, 1998, 103: 109–114



[9]Pennell A L, Halloran G M. Inheritance of supernumerary spikelets in wheat. Euphytica, 1983, 32: 767–776



[10]Klindworth D L, Williams N D, Joppa L R. Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome, 1990, 33: 515–520



[11]Sears E R. The aneuploids of common wheat. University of Missouri, Columbia, Mo, 1954. pp 3–58



[12]Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307



[13]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018



[14]Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114



[15]Klindworth D L, Williams N D, Joppa L R. Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome, 1990, 33: 509–514



[16]Yan X-H(闫晓华). Chromosome location of genes for ramified spikelet in bread wheat and the cloning gene of ramosa2. MS Thesis of Northwest Sci-Tech University, 2007 (in Chinese with English abstract)



[17]Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C. Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet, 2006, 112: 1073–1085

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!