欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 571-579.doi: 10.3724/SP.J.1006.2013.00571

• 综述 •    下一篇

大豆光周期反应与生育期基因研究进展

夏正俊   

  1. 中国科学院东北地理与农业生态研究所,黑龙江哈尔滨150081
  • 收稿日期:2012-09-24 修回日期:2013-01-16 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 基金资助:

    本研究由中国科学院百人计划及知识创新工程重要方向项目(KZCX2-EW-303),国家自然科学基金项目(31271742)和黑龙江省重点项目(ZD201120)项目资助。

Research Progresses on Photoperiodic Flowering and Maturity Genes in Soybean (Glycine max Merr.)

XIA Zheng-Jun   

  1. Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin 150081, China
  • Received:2012-09-24 Revised:2013-01-16 Published:2013-04-12 Published online:2013-01-28

摘要:

20世纪20年代,植物学家GarnerAllard在研究大豆与烟草等植物的光反应时发现了植物光周期现象。大豆作为模式植物对光周期现象的理论形成起了重要作用。但大豆基因组的复杂性及与相关功能基因关系的不明确性严重阻碍了学者对大豆光周期现象本质的认识。近年来,随着控制大豆生育期主要QTL基因的相继克隆,特别是对大豆生育期贡献最大的E1基因的成功破译,学者们逐步认识到大豆光周期调控开花的独特性。遗传学及分子生物学研究表明,大豆中具有拮抗关系的E1FT基因位于大豆光周期调控开花主要通路的中心节点(integrator),但两者间的作用机制及相关的调节因子尚待明晰。对大豆光周期反应及生育期基因的深入研究,在生产实践上可为大豆品种的栽培区划、合理布局及分子育种等提供理论依据。

关键词: 大豆, 光周期反应, 开花期, 成熟期, E1

Abstract:

Plant photoperiodism was discovered in 1920 when scientists studied the light response of soybean and tobacco. As a model plant, soybean made a crucial contribution towards establishment of the general concept of photoperiodism. Apart from its palaeopolyploid nature and relative bigger genome size of genome, the unknown molecular identities of major QTL genes controlling flowering time hamper our understanding of the soybean photoperiodism. After the successful cloning of major QTL genes controlling flowering time, especially the major QTL E1, the unique mechanism in soybean photoperiodic flowering has been generally revealed. Although the details of molecular mechanism of soybean photoperiodism remain fully unclear, genetic and molecular studies have proven that the E1 and GmFT genes stand as major regulators (integrators) in the regulatory pathway of photoperiodic flowering. The advance on the mechanism of photoperiodic flowering in soybean will provide solid molecular basis for cultivar classification of maturity, proper crop arrangement and molecular breeding of new cultivars.

Key words: Soybean, Photoperiodic response, Flowering time, Maturity time, E1

[1]Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res, 1920, 18: 553–606



[2]Owen F V. Inheritance studies in soybeans. II. glabrousness, color of pubescence, time of maturity, and linkage relations. Genetics, 1927, 12: 519–523



[3]Garner W W, Allard H A. Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol, 1933, 8: 347–356



[4]Heinze P H, Parker M W, Borthwick H A. Floral initiation in Biloxi soybean as influenced by grafting. Bot Gaz, 1942, 103: 518–530



[5]Coulter M W, Hamner K C. Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiol, 1964, 39:848–856



[6]Mauseth J D. Botany: An Introduction to Plant Biology, 3rd edn. Sudbury, M A: Jones and Bartlett Learning, 2003. pp 422–427



[7]Hamner K C. Interrelation of light and darkness in photoperiodic induction. Bot Gaz, 1940, 101: 658–687



[8]Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol, 2004, 135: 677–684



[9]Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol, 2011, 14: 45–52



[10]Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland. G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613–1616



[11]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003–1006



[12]Fornara F, de Montaigu A, Coupland G SnapShot: control of flowering in Arabidopsis. Cell, 2010, 141: 550 e1–2



[13]Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293–297



[14]Sawa M, Nusinow D A, Kay SA, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318: 261–265



[15]Mathieu J, Warthmann N, Küttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol, 2007, 17: 1055–1060



[16]Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033–1036



[17]Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet, 2010, 42: 635–638



[18]Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol, 2008, 49: 1645–1658



[19]Griffiths S, Dunford R P, Coupland G, Laurie D A. The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003, 131: 1855–1867



[20]Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol, 2007, 144: 248–257



[21]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096–1105



[22]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767



[23]Bernard R L. Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242–244



[24]Buzzell R I, Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703–707



[25]Buzzell R I, Voldeng H D. Inheritance of insensitivity to long day length. Soybean Genet Newsl, 1980, 7: 26–29



[26]McBlain B A, Bernard R L, Cremeens C R, Korczak J F. A procedure to identify genes affecting maturity using soybean isoline testers. Crop Sci, 1987, 27: 1127–1132



[27]Ray J D, Hinson K, Mankono, J E B Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001–1006



[28]Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229–232



[29]Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698–701



[30]Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524–527



[31]Cober E R, Tanner J W, Voldeng H D. Genetic control of photoperiod response in early-maturing near-isogenic soybean lines. Crop Sci, 1996, 36: 601–605



[32]Cober E R, Tanner J W, Voldeng H D Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci, 1996b, 36: 606–610



[33]Abe J, Xu D H, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y, Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300–1304



[34]Stewart D W, Cober E R, Bernard R L. Modeling genetic effects on the photothermal response of soybean phenological development. Agron J, 2003, 95: 65–70



[35]Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61–72



[36]Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet, 2005, 110: 634–639



[37]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336



[38]Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, doi/10.1073/pnas.1117982109



[39]Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178–183



[40]Thakare D, Kumudini A, Dinkins R D. Expression of flowering-time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta, 2010, 231: 951–963



[41]Thakare D, Kumudini A, Dinkins R D. The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Planta, 2011, 234: 933–943



[42]Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007



[43]Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol, 2009, 69: 164–175



[44]Neff M M, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol, 1998, 118: 27–35



[45]Weller J L, Murfet I C, Reid J B. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol, 1997, 114: 1225–1236



[46]Weller J L, Beauchamp N, Kerckhoffs L H, Platten J D, Reid J B. Interaction of phytochromes A and B in the control of deetiolation and flowering in pea. Plant J, 2001, 26: 283–294



[47]Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311–3325



[48]Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262



[49]Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407



[50]Kong F, Liu B, Xia Z, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two Coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154 1220–1231



[51]Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One, 2011, 6: e29238



[52]Harmer S L. The circadian system in higher plants. Annu Rev Plant Biol, 2009, 60: 357–377



[53]McClung C R, Gutierrez R A. Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev, 2010, 20: 588–598



[54]Bell-Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Gene, 2005, 6: 544–556



[55]Más P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol, 2008, 18: 273–81



[56]Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy M E, Ellis N, Beltran J P, Rameau C, Weller J L. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol, 2005, 137:1420–1434



[57]Quecini V, Zucchi M I, Baldin J, Vello N A. Identification of soybean genes involved in circadian clock mechanism and photoperiodic control of flowering time by in silico analyses. J Integr Plant Biol, 2007, 49: 1640–1653



[58]Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008, 105: 21028–21033



[59]Matsumura H, Kitajima H, Akada S, Abe J, Minaka N, Takahashi R. Molecular cloning and linkage mapping of cryptochrome multigene family in soybean. Plant Genome, 2009, 2: 271–281



[60]Cerdán P D, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423: 881–885



[61]Xia Z J, Zhai H, Liu B H, Kong F J, Yuan X H, Hongyan Wu, Cober E, Harada K. Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Syst Evol, 2012, 298: 1217–1227



[62]Hayama R, Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol, 2003, 6: 13–19



[63]Liu H, Wang H, Gao P, Xü J, Xü T, Wang J, Wang B, Lin C, Fu Y F. Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J Plant Physiol, 2009, 166: 278–289



[64]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484



[65]Pierre J B, Bogard M, Herrmann D, Huyghe C, Julier B. A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed, 2011, 28: 25–35



[66]Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J, 2006, 46: 462–476



[67]Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell, 2007, 19: 2988–3000



[68]Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120



[69]Huang G W, Ma J H, Han Y Z, Chen X J, Fu Y F. Cloning and expression analysis of the soybean CO-like gene GmCOL9. Plant Mol Bio Rep, 2011, 29: 352–359



[70]Liu L, Ma J, Han Y, Chen X, Fu Y F. The isolation and analysis of a soybean CO homologue GmCOL10. Russian J Plant Physiol, 2011, 58: 330–336



[71]Zhang Q-Z(张清哲), Ma J-H(马锦花), Chen X-J(陈新建), Fu Y-F(傅永福). Cloning and analysis of GmCOL4 gene in Glycine max L. Acta Agron Sin (作物学报), 2010, 36(4): 539−548 (in Chinese with English abstract)



[72]Hecht V, Knowles C L, Vander Schoor J K, Liew L C, Jones S E, Lambert M J, Weller J L. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol, 2007, 144: 648–661



[73]Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol, 2008, 18: 1338–1343



[74]Cober E R, Curtis D F. Both promoters and inhibitors affected flowering time in grafted soybean flowering-time isolines. Crop Sci, 2003, 43: 886–891



[75]Przepiorkowski T, Martin S K S. The effect of grafting on the flowering of near-isogenic lines of soybean. Crop Sci, 2003, 43: 1760–1763



[76]Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R. Genome duplication in soybean (Glycine subgenus soja). Genetics, 1996, 144: 329–338



[77]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson RL, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568



[78]Schlueter J A, Scheffler B E, Schlueter S D, Shoemaker R C. Sequence conservation of homoeologous bacterial artificial chromosomes and transcription of homoeologous genes in soybean (Glycine max L. Merr). Genetics, 2006, 174: 1017–1028



[79]Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon S B, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell, 2012, 24: 21–32



[80]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198–210



[81]Le Corre V, Roux F, Reboud F. DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol, 2002, 19: 1261–1271



[82]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926–936



[83]Takahashi Y, Teshima K M, Yokoi S, Innan H, Shimamoto K. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA, 2009, 106: 4555–4560



[84]Wang J-L(王金陵). Photoperiodic response in soybean. Agri-Forest Gazeta (农林新报), 1942, 19–30 (in Chinese)



[85]Wang J-L(王金陵), Wu Y-X(武镛祥), Wu H-L(吴和礼), Sun S-C(孙善澄). Analysis on photoperiod ecotypes of cultivated soybean originating from different locations of China. Acta Agric Sin (农业学报), 1956, 7(3): 169–180 (in Chinese)



[86]Wang J-L(王金陵), Zhu Q-C(祝其昌). Preliminary study on the inheritance of soybean maturity. Acta Agron Sin (作物学报), 1963, 2(3): 333−336 (in Chinese with English abstract)



[87]Gai J-Y(盖钧镒), Wang Y-S(汪越胜), Zhang M-C(张孟臣), Wang J-A(王继安), Chang R-Z(常汝镇). Studies on the cas-sification of maturity groups of soybeans in China. Acta Agron Sin (作物学报), 2001, 27(3): 286−292 (in Chinese with English abstract)



[88]Wang Y(王英), Wu C-X(吴存祥), Zhang X-M(张学明), Wang Y-P(王云鹏), Han T-F(韩天富). Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin (作物学报), 2008, 34: 1160−1168 (in Chinese with English abstract)



[89]Han T-F(韩天富), Wang J-L(王金陵). A study on the responses of different ecotypes of Chinese soybean to post-flowering photoperiod. Acta Agron Sin (作物学报), 1996, 22: 20–26 (in Chinese with English abstract)



[90]Ning H-X(宁慧霞), Li Y-H(李英慧), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Guan R-X(关荣霞), Luo S-P(罗淑萍), Qiu L-J(邱丽娟). Deducing maturity genotype of the Chinese soybean varieties. Acta Agron Sin (作物学报) 2008, 34(3): 382−388 (in Chinese with English abstract)



[91]Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005–1012



[92]Sayama T, Hwang T Y, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z, Tsubokura Y, Watanabe S, Harada K, Funatsuki H, Ishimoto M. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci, 2010, 60: 380–389



[93]Upadhyay A P, Asumadu H, Ellis R H. A Characterization of photothermal flowering responses in maturity isolines of soybean [Glycine max (L.) Merrill] cv Clark. Ann Bot, 1994, 74: 87–96



[94]Upadhyay A P, Summerfield R H, Ellis R H, Roberts E H, Qi A. Variation in the durations of the photoperiod-sensitive and photoperiod- insensitive phases of development to flowering among eight maturity isolines of soybean [Glycine max (L.) Merrill]. Ann Bot,1994, 74: 97–101



[95]Curtis D F, Tanner J W, Luzzi B M, Hume D J Agronomic and phenological differences of soybean isolines differing in maturity and growth habit. Crop Sci, 2000, 40: 1624–1629



[96]Saindon G, Beversdorf W D, Voldeng H D. Adjustment of the soybean phenology using the E4 locus. Crop Sci, 1989, 29: 1361–1365



[97]Khan N A, Githiri S M, Benitez E R, Abe J, Kawasaki S, Hayashi T, Takahashi R. QTL analysis of cleistogamy in soybean. Theor Appl Genet, 2008, 117: 479–487



[98]Takahashi R, Abe J. Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. Crop Sci, 1999, 39: 1657–1662



[99]Githiri S M, Yang D, Khan N A, Xu D, Komatsuda T, Takahashi R. QTL analysis of low temperature induced browning in soybean seed coats. J Hered, 2007, 98: 360–366



[100]Woodworth C M. Inheritance of growth habit, pod color, and flowering color in soybean. J Am Soc Agron, 1923, 15: 485–495



[101]Kim M Y, Lee S, Van K, Kim T H, Jeong S C, Choi I Y, Kim D S, Lee Y S, Park D, Ma J, Kim W Y, Kim B C, Park S, Lee K A, Kim D H, Kim K H, Shin J H, Jang Y E, Kim K D, Liu W X, Chaisan T, Kang Y J, Lee Y H, Kim K H, Moon J K, Schmutz J, Jackson S A, Bhak J, Lee S H. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA, 2010, 107: 22032–22037



[102]Lam H M, Xu X, Liu X, Chen W, Yang G, Wong F L, Li M W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun S S, Zhang G. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059



[103]Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176: 685–696



[104]Haun W J, Hyten D L, Xu W W, Gerhardt D J, Albert T J, Richmond T, Jeddeloh J A, Jia G, Springer N M, Vance C P, Stupar R M. The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol, 2011, 155: 645–655



[105]Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 2010, 63: 86–99



[106]Wong C E, Singh M B, Bhalla P L. Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J, 2009, 57: 832–845

 


 
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!