作物学报 ›› 2013, Vol. 39 ›› Issue (05): 905-911.doi: 10.3724/SP.J.1006.2013.00905

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 1华中农业大学植物科技学院,湖北武汉430070; 2农业部长江中游作物生理生态与耕作重点实验室,湖北武汉430070
  • 收稿日期:2012-08-27 修回日期:2012-12-12 出版日期:2013-05-12 网络出版日期:2013-02-22
  • 基金资助:

    This study was supported by the Professional (Agricultural) Researching Project for Public Interests (3-5-19), the Modern Agro-Industry Technology Research System (Cotton 2007-2010) and the National Transgenic Cotton Production Program (2009ZX08013-014B).

Effect of Potassium Application Rate on Cotton (Gossypium hirsutum L.) Biomass and Yield

YANG Guo-Zheng1,2,*,WANG De-Peng1,NIE Yi-Chun1,ZHANG Xian-Long1   

  1. 1 College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; 2 Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of Yangtze River, Wuhan 430070, China
  • Received:2012-08-27 Revised:2012-12-12 Published:2013-05-12 Published online:2013-02-22
  • Supported by:

    This study was supported by the Professional (Agricultural) Researching Project for Public Interests (3-5-19), the Modern Agro-Industry Technology Research System (Cotton 2007-2010) and the National Transgenic Cotton Production Program (2009ZX08013-014B).


近年来我国棉花生产,要么产量受制于缺钾引起的早衰,要么过量施钾导致生产成本增加和养分流失。然而,最适宜棉花生物质积累和增加产量的钾肥用量并不明了,因而也无适宜的施钾量推荐给农民。因此,采用大田试验(随机区组设计)和盆栽试验研究了钾肥用量对棉花(华杂棉H318)生物量和产量的影响。结果表明,K2处理(225 kg hm–2)产量(1341 kg hm–2)最高,单位面积成铃数(74 m–2)最多,盆栽试验结果具有相同趋势。同样,K2的棉株生物量,在各个取样时期都最大,尤其是生殖器官生物量。在5个钾肥用量(0~450 kg hm–2)处理中,棉株生物质快速累积期几乎同时启动,但终止期存在一定差异。棉株生物质快速累积期间,K2处理无论是营养器官还是生殖器官生物质的平均累积速度、最大累积速度均最高。可见,在长江中游棉区中等肥力棉田,同时施用N 300 kg hm–2P2O5 90 kg hm–2的条件下,钾肥用量225 kg hm–2更有利于棉花提高产量,因为在这一用量条件下棉株生物质累积速度最快、累积量最大。

关键词: 棉花, 钾肥(K), 生物质, 产量


Cotton production in China is recently confronted with either yield loss by plant early senescence resulted from potassium (K) deficit, or cost rise and nutrients leaching by K excess use. However, the optimal K rate in term of cotton biomass production and yield remains uncertain to make a recommendation for the farmers. Both field with random block design and outdoor pot trials were carried out to determine how cotton (Gossypium hirsutum L. vs. Huazamian H318) biomass and yield were affected by K rates. The result showed that K2 (225 kg ha–1) harvested the highest yield (1 341 kg ha–1) and bore the most bolls (74 bolls per square meter) in the field trial, with a similar trend for the pot trial. As expected, cotton biomass of K2 was the highest at each of the sampling stages, especially for reproductive organs. Cotton biomass initiated simultaneously the fast accumulation period (FAP), but terminated the period differently among five K rates (0–450 kg ha–1). During the period, K2 had the highest biomass accumulation rate both on an average and in the maximum, and for vegetative and reproductive organs. It suggests that K rate of 225 kg ha–1 be optimal to produce a favorable yield in the field of medium fertility when N 300 kg ha–1 and P2O5 90 kg ha–1 are applied in the Middle Reaches of Yangtze River, in which condition cotton plants accumulate greater amount of biomass with a higher accumulating rate.

Key words: Cotton, Potassium (K), Biomass, Yield

[1]Pettigrew W T. Relationships between insufficient potassium and crop maturity in cotton. Agron J, 2003, 95: 1323–1329

[2]Zhao D, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 39: 103–109

[3]Wang N, Hua H B, Egrinya E, Li Z H, Duan L S, Tian X L. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J Photochem Photobio B: Biol, 2012, 110: 1–8

[4]Edward G, Lionel J M, Julie C, Sylvain P, Michael D. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ Exp Bot, 2010, 67: 451–459

[5]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Nat Acad Sci USA, 2004, 101: 8827–8832

[6]Zhang Z-Y(张志勇), Wang Q-L(王清莲), Li Z-H(李召虎), Duan L-S(段留生), Tian X-L(田晓莉). Effects of potassium deficiency on root growth of cotton seedlings and its physiological mechanisms. Acta Agron Sin (作物学报), 2009, 35(4): 718–723(in Chinese with English abstract)

[7]Li B, Wang Y, Zhang Z Y, Wang B M, Egrinya E, Duan L S, Li Z H, Tian X L. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J Plant Physiol, 2012, 169: 327–335

[8]Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670–681

[9]Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007, 30: 659–670

[10]Gulick S H, Cassman K G, Grattan S R. Exploitation of soil potassium in layered pro?les by root systems of cotton and barley. Soil Sci Soc Am J, 1989, 53: 146–153

[11]James C. Global status of commercialized biotech/GM crops: ISAAA Brief, 2009, No. 41. Ithaca, NY: ISAAA

[12]Wang G-W(王刚卫), Tian X-L(田晓莉), Xie X-Y(谢湘毅), Li B(李博), Duan L-S(段留生), Wang B-M(王宝民), He Z-P(何钟佩), Li Z-H(李召虎). Effects of potassium deficiency on the transport and partitioning of potassium in cotton plant. Cotton Sci (棉花学报), 2007, 19(3): 173–178 (in Chinese with English abstract)

[13]Bednarz C W, Oosterhuis D M, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot, 1998, 39: 131–139

[14]Reddy K R, Zhao D L. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Res, 2005, 94: 201–213

[15]Xia Y(夏颖), Jiang C-C(姜存仓), Chen F(陈防), Lu J-W(鲁剑巍), Li X-K(李小坤), Hao Y-S(郝艳淑). Review on potassium nutrient and potassium fertilizer application of cotton. J Huazhong Agric Univ (华中农业大学学报), 2010, 29(5): 658–663 (in Chinese with English abstract)

[16]Cakmak I, Hengeler C, Marschner H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot, 1994, 45: 1251–1257

[17]Fan X-F(范希峰), Wang H-X(王汉霞), Tian X-L(田晓莉), Duan L-S(段留生), Wang B-M(王宝民), He Z-P(何钟佩), Li Z-H(李召虎). Effects of potassium on yield of cotton (Gossypium hirsutum L.) and optimal quantity of potassium in Huanghuaihai Plain, China. Cotton Sci (棉花学报), 2006, 18(3): 175–179 (in Chinese with English abstract)

[18]Zhou T-H(周桃华), Zhang H-P(张海鹏), Liu L(刘玲). Studies on effect of potassium fertilizer applied on yield of Bt cotton. Chin Agric Sci Bull (中国农学通报), 2010, 22(8): 292–296 (in Chinese with English abstract)

[19]Yang G-Z(杨国正). Cotton Response to Nitrogen and the Mechanism of Mechanism of Efficient Utilization to Nitrogen Fertilizer. PhD Dissertation of Huazhong Agricultural University, 2011 (in Chinese with English abstract)

[20]Yang G Z, Tang H Y, Nie Y C, Zhang X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agric, 2011, 35: 164–170

[21]Yang G Z, Zhou M Y. Multi-site investigation of optimum planting density and boll distribution of high-yielding cotton (G. hirsutum L.) in Hubei Province. Agric Sci China, 2010, 9: 1749–1757

[22]Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995

[23]Marschner H, Kirkby E, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot, 1996, 47: 1255–1263

[24]Xin C-S(辛承松), Dong H-Z(董合忠), Luo Z(罗振), Tang W(唐薇), Zhang D-M(张冬梅), Li W-J(李维江), Kong X-Q(孔祥强). Effects of N, P, and K fertilizer application on cotton growing in saline soil in Yellow River Delta. Acta Agron Sin (作物学报), 2010, 36(10): 1698–1706 (in Chinese with English abstract)

[25]Kolahchi Z, Jalali M. Effect of water quality on the leaching of potassium from sandy soil. J Arid Environ, 2007, 68: 624–639

[26]Jiang C C, Xia Y, Chen F, Lu J W, Wang Y H. Plant Growth, yield components, economic responses, and soil indigenous K uptake of two cotton genotypes with different K-efficiencies. Agric Sci China, 2011, 10: 705–713

[27]Yang G Z, Tang H Y, Tong J, Nie Y C, Zhang X L. Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crops Res, 2012, 125: 161–166

[28]Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Res, 2004, 87: 73–87

[29]Fang W-P(房卫平), Li L-L(李伶俐), Xie D-Y(谢德意), Ma Z-B(马宗斌), Zhang D-L(张东林), Du Y-F(杜远仿). Comparison of dry matter accumulation and N, P, K uptake and distribution in different organs and yield on hybrid cotton and conventional cotton. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(6): 1401–1406 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Full text



No Suggested Reading articles found!