欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1409-1415.doi: 10.3724/SP.J.1006.2013.01409

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶脉白化突变体wpsm的遗传分析与基因定位

朱小燕,徐芳芳,桑贤春,蒋钰东,代高猛,王楠,张长伟,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室 / 南方山地农业教育部工程研究中心,重庆 400716
  • 收稿日期:2012-11-15 修回日期:2013-03-22 出版日期:2013-08-12 网络出版日期:2013-05-22
  • 通讯作者: 何光华,E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A100),国家科技支撑计划项目(2011BAD35B02-05)和重庆市攻关项目(CSTC,2012ggc8002)资助。

Genetic Analysis and Gene Mapping of a Rice White Midrib Mutant wpsm

ZHU Xiao-Yan,XU Fang-Fang,SANG Xian-Chun,JIANG Yu-Dong,WANG Nan,ZHANG Chang-Wei,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
  • Received:2012-11-15 Revised:2013-03-22 Published:2013-08-12 Published online:2013-05-22
  • Contact: 何光华,E-mail: hegh@swu.edu.cn

摘要:

叶绿素是植物生长发育必不可缺的元件。叶色突变体的发掘与研究在叶绿体发育、叶绿素代谢、光合作用等研究中具有重要作用。利用化学诱变剂EMS诱变水稻(Oryza sativa L.)籼型恢复系缙恢10号,从其后代中筛选出一份突变性状稳定遗传的叶脉白化突变体wpsm (white primary and secondary midrib)。与野生型相比,该突变体苗期表现正常,孕穗后期剑叶、倒二叶、倒三叶整张叶片的主叶脉和次级叶脉白化,叶肉细胞无显著变化,该性状一直持续到成熟期。抽穗期突变体wpsm的光合色素含量极显著低于野生型,净光合速率(Pn)及表观电子传递速率(ETR)极显著降低,株高、每穗实粒数、千粒重、结实率等农艺性状均显著降低。该突变性状受一对隐性核基因调控,利用892株西农1A/wpsmF2隐性定位群体,将该基因定位在第6染色体上引物InDel 10InDel 4之间,遗传距离分别为0.06 cM0.12 cM,物理距离约为56 kb。本研究为WPSM基因的克隆和功能研究奠定了基础。

关键词: 水稻(Oryza sativa L.), 叶脉, 白化, 基因定位

Abstract:

A white midrib mutant temparily designated as wpsm (white primary and secondary midrib) was screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by ethyl methane sulfonate (EMS). The wpsm mutant displayed normal leaves during the seedling stage. In the late booting stage, the primary and secondary midrib of the first, second and third leaves of the wpsm mutant showed a bleached appearance, compared with those of the wild type, while mesophyll cells kept normal. This mutational character was maintained to maturity. The photosynthetic pigment of the wpsm was significantly lower than that of the wild type, so were Pn and ETR. Agronomic traits such as plant height, filled grain number per panicle, seed setting rate and 1000-grain weight were significantly decreased when compared with the wild type. Genetic analysis suggested that the mutational characters were controlled by a single recessive nuclear gene. Xinong 1A was crossed with the wpsm, 892 recessive mutants from the F2 segregation population were used for gene mapping. WPSM was mapped on chromosome 6, between InDel 10 and InDel 4, with physical distance of about 56 kb. This result provides a foundation for WPSM gene cloning by map-based strategy as well as its functional analysis.

Key words: Oryza sativa L., Midrib, White, Gene mapping

[1]Rudiger W. Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry, 1997, 46: 1151–1167



[2]Bollivar D W. Recent advances in chlorophyll biosynthesis. Photosynth Res, 2006, 90: 173–194



[3]Kurata N, Miyoshi K, Nonomura K I, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48–62



[4]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364–375



[5]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906



[6]Omura T, Iwata N, Satoh H. Linkage studies in rice (Oryza sativa L.) on some virescent and chlorine mutants, J Faculty Agric Kyshu Univ, 1978, 23: 85–93



[7]Kusumi K, Mizutani A, Nishimura M, Iba K. A virescent gene V1 determinates the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12: 1241–1250



[8]Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039–1050



[9]Li H-C(李红昌), Qian Q(钱前), Wang B(王斌), Li X-B(李晓波), Zhu L-H(朱立煌), Xu J-C(徐吉臣). Identification and chromosomal localization of rice white panicle. Chin Sci Bull (科学通报), 2003, 48(3): 268–270 (in Chinese)



[10]Li N(李娜), Chu H-W(储黄伟), Wen T-Q(文铁桥), Zhang D-B(张大兵). Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai (上海农业学报), 2007, 23(1): 1–4 (in Chinese with English abstract)



[11]Hu J-T(胡景涛), Zhang J(张甲), Li Y-Y(李园园), Fu C-Y(付崇允), Zheng J(郑静), Chen J-B(陈家彬), Hu Y(胡燕), Li S-G(李仕贵). Genetic analysis and mapping of a rice white midrib mutant Oswm2. Hereditas (遗传), 2008, 31(9): 1201–1206 (in Chinese with English abstract)



[12]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313



[13]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[14]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325



[15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607



[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[17]Kosambi D D. The estimation of map distances from recombination valurres. Ann Human Genet, 1944, 12: 172–175



[18]Jung K H, Hur J, Ryu C H, Chung Y Y, Miyao A, Hirochika H, Gynheung A. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472



[19]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337



[20]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Sun N, Wang L F, Jiang L, Wang C W, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40



[21]Sichul L, Kim J H, Yoo E S, Lee C H, Hirohiko H, Gynhenng A. A differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818



[22]Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K. Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTP. Plant Cell Physiol, 2004, 45: 1194–1201



[23]Jiang H, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209



[24]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512–527



[25]Yoo S C, Cho S H, Sugimoto H, Li Jinjie, Kusumi K, Koh H J, Iba K, Paek N C. Rice virescent 3 and stripe 1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401



[26]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375



[27]Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant, 1992, 86: 180–187



[28]Demmig B, Winter K, Kruger A, Czygan F C. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol, 1987, 84: 218–224



[29]Gray G R, Chauvin L P, Sarhan F, Hunter NPA. Cold acclimation and freezing tolerance: a complex interaction of light and temperature. Plant Physiol, 1997, 114: 464–474



[30]Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. J Exp Bot, 2000, 51: 659–668



[31]Michal K. On the relation between the non-photochemical quenching of chlorophyll fluorescence and photosystem I light harvesting efficiency a repetitive flash fluorescence induction study. Photosynth Res, 2001, 68: 571–576



[32]Xu F-H(许凤华), Cheng Z-J(程治军), Wang J-L(王久林), Wu Z-M(吴自明), Sun W(孙伟), Zhang X(张欣), Lei C-L(雷财林), Wang J(王洁), Wu F-Q(吴赴涛), Guo X-P(郭秀平), Liu L-L(刘玲珑), Wan J-M(万建民). Genetic analysis and fine mapping of gws gene using green-white-stripe rice mutant. Acta Agron Sin (作物学报), 2010, 36(5): 713–720 (in Chinese with English abstract)



[33]Sang X-C(桑贤春), Xu F-F(徐芳芳), Ling Y-H(凌英华), Zhao F-M(赵芳明), Yang Z-L(杨正林), Tang Y-Q(唐彦强), Tian X-Q(田晓庆), Li Y-F(李云峰), He G-H(何光华). Identification and molecular mapping of stripe leaf mutant st(t) in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(2): 211–216 (in Chinese with English abstract)



[34]Song L-L(宋莉英), Sun L-L(孙兰兰), Shu Z(舒展), Zeng W(曾伟), Li W-H(李伟华), Peng C-L(彭长连). Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in leaves of invasive Wedelia trilobata. Acta Ecol Sin (生态学报), 2009, 29(7): 3713–3721 (in Chinese with English abstract)



[35]Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot (植物学通报), 1999, 16(4): 444–448 (in Chinese with English abstract)

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!