欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1843-1848.doi: 10.3724/SP.J.1006.2013.01843

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花幼苗钾吸收的系统反馈调节初步研究

王晔,田晓莉*   

  1. 中国农业大学作物化学控制研究中心 / 植物生理学与生物化学国家重点实验室,北京 100193
  • 收稿日期:2013-04-09 修回日期:2013-06-09 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62732039
  • 基金资助:

    本研究由中央高校基本科研业务费专项资金(2013BH023), 国家自然科学基金项目(31271629)和中国博士后科学基金(2013M530776)项目资助。

Systemic Feedback Regulation of K+ Uptake in Cotton at Seedling Stage

WANG Ye,TIAN Xiao-Li*   

  1. State Key Laboratory of Plant Physiology and Biochemistry, Center of Crop Chemical Control, China Agricultural University, Beijing 100193, China
  • Received:2013-04-09 Revised:2013-06-09 Published:2013-10-12 Published online:2013-08-01
  • Contact: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62732039

摘要:

以中棉所41和辽棉17为材料,采用单接穗双砧木嫁接的方法构建分根体系,在营养液培养条件下研究棉花幼苗钾吸收的系统反馈调节。分根处理6 d后,高钾侧(2.50 mmol L–1)根系(Sp.+K)的吸收能力受到低钾侧(0.01 mmol L–1)K+需求信号的诱导,吸收动力学参数Imax (最大吸收速率)与整根高钾对照(C.+K)相比增加了79%~92%;低钾侧根系(Sp.-K)Imax则受到高钾侧K+供应信号的抑制,与整根低钾对照(C.-K)相比下降了27%~40%。中棉所41分根处理3 d后去除低钾侧根系,保留的高钾侧根系失去K+需求信号的诱导,其Imax下降。棉花幼苗K+吸收的这种反馈调节与地上部和根系的K+含量关系不大。

关键词: 棉花, 分根, 钾吸收, 反馈调节

Abstract:

This hydroponic split-root experiment was conducted to elucidate the long-distance systemic regulation of K+ uptake in cotton (Gossypium hirsutum L.) seedlings with two cotton cultivars CCRI41 and Liaomian17 as materials. Inverted Y grafting (one scion/two rootstocks, hypocotyl-to-hypocotyl) was used to establish split-root plants. The K+-uptake characteristics of cotton seedlings were measured by depletion method and described by kinetic parameters, Imax (the maximum rate of uptake), Km (the external concentration at which the uptake rate is 0.5 Imax) and Cmin (the external concentration at which no net flux occurs). In relative to the sufficient K+ control (both root halves supplied with 2.50 mmol L–1 K+), the root half supplied with 2.50 mmol L–1 K+ for six days showed 79% to 92% more Imax owing to the induction of K+-demand signal derived from the root half starved with K+. Compared with the K+ starvation control (both root halves supplied with 0.01 mmol L–1 K+), Imax of root half supplied with 0.01 mmol L–1 K+ for six days decreased by 27% to 40% due to the suppression of K+-supply signal initiated by the root half grown in sufficient K+. When the root half starved with K+ in CCRI41 was removed after three days of split-root treatment, the remained root half incessantly supplied with 2.50 mmol L–1 K+ for six days had less Imaxrelative to the whole split-root plants, which is likely attributed to the loss of K+-demand signal from the other root half during last three days. This systemic feedback regulation of K+ uptake in cotton seedlings was independent of K+ content of either root or shoot.

Key words: Cotton, Split-root, K uptake, Systemic regulation

[1]Alvarez J M, Vidal E A, Gutierrez R A. Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol, 2012, 15: 185–191



[2]Lough T J, Lucas W J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol, 2006, 57: 203–232



[3]Ho C H, Lin S H, Hu H C, Tsay Y F. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138: 1184–1194



[4]Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol, 2011, 62: 185–206



[5]Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 4.1–4.26



[6]Schmidt W, Michalke W, Schikora A. Proton pumping by tomato roots: effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in thizodermal cells. Plant Cell Environ, 2003, 26: 361–370



[7]Liu T Y, Chang C Y, Lin T J. The long-distance signaling of mineral macro-nutrients. Curr Opin Plant Biol, 2009, 12: 312–319



[8]Leigh R A, Wyn Jones R G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol, 1984, 97: 1–13



[9]Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Annu Rev Plant Physiol, 1980, 31: 239–298



[10]Maathuis F J M. Physiological functions of mineral macronutrients. Curr Opin Plant Biol, 2009, 12: 250–258



[11]Kerby T A, Adams F. Potassium nutrition of cotton Gossypium hirsutum. In: Munson R D, ed. Potassium in Agriculture International Symposium. Atlanta GA USA, 1985. Pp 843–860



[12]Gerik T J, Morrison J E, Chichester F W. Effects of controlled-traffic on soil physical properties and crop rooting. Agron J, 1987, 79: 434–438



[13]Brouder S M, Cassman K G. Cotton root and shoot response to localized supply of nitrate, phosphate and potassium: Split-pot studies with nutrient solution and vermiculitic soil. Plant Soil, 1994, 161: 179–193



[14]Cope J T. Effects of 50 years of fertilization with phosphorus and potassium on soil test levels and yields at six locations. Soil Sci Soc Am J, 1981, 45: 342–347



[15]Dong H-Z(董合忠), Li W-J(李维江), Tang W(唐薇), Zhang D-M(张冬梅). Research progress in physiological premature senescence in cotton. Cotton Sci (棉花学报), 2005, 17: 56–60 (in Chinese with English abstract)



[16]Pettigrew W T, Meredith Jr W R. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr, 1997, 20: 531–548



[17]Siddiqi M Y, Glass A D M. Regulation of K+ influx in barley: Evidence for a direct control of influx by K+ concentration of root cells. J Exp Bot, 1987, 38: 935–947



[18]Claassen N, Barber S A. Potassium influx characteristics of corn roots and interaction with N, P, Ca, and Mg influx. Agron J, 1977, 69: 860–864



[19]Drew M C, Saker L R. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation. Planta, 1984, 160: 500–507



[20]Martinez-Cordero M A, Martinez V, Rubio F. High-affinity K+ uptake in pepper plants. J Exp Bot, 2005, 56: 1553–1562



[21]Li B(李博), Wang C-X(王春霞), Zhang Z-Y(张志勇), Duan L-S(段留生), Li Z-H(李召虎), Tian X-L(田晓莉). Three types of grafting techniques available for research of root-shoot communication in cotton (Gossypium hirsutum) seedlings under low-potassium condition. Acta Agron Sin (作物学报), 2009, 35(2): 363–369  (in Chinese with English abstract)



[22]Jiang T-H(蒋廷惠), Zheng S-J(郑绍建), Shi J-Q(石锦芹), Hu A-T(胡霭堂), Shi R-H(史瑞和), Xu M(徐茂). Several considerations in kinetic research on nutrients uptake by plants. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 11–17 (in Chinese with English abstract)



[23]Gansel X, Munos S, Tillard P, Gojon A. Differential regulation of the NO3– and NH4+ transporter genes AtNRT2.1 and AtMR1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J, 2001, 26: 143–155



[24]Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette M L, van der Merwe M J, Kakar K, Gouzy J, Fernie A R, Udvardi M, Salon C, Gojon A, Lepetit M. Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol, 2008, 146: 2020–2035



[25]Liu C, Muchhal U S, Uthappa M, Kononowicz A K, Raghothama K G. Tomato phosphate transporter gene are differentially regulated in plant tissues by phosphorus. Plant Physiol, 1998, 116: 91–99



[26]Chiou T J, Liu H, Harrison M J. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J, 2001, 25: 281–293



[27]Smith F W, Mudge S R, Rae A L, Glassop D. Phosphate transport in plants. Plant Soil, 2003, 248: 71–83



[28]Schmidt W, Boomgaarden B, Ahrens V. Reduction of root iron in Plantagolanceolata during recovery from Fe deficiency. Physiol Plantarum, 1996, 98: 587–593



[29]Schikora A, Schmidt W. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiol, 2001, 125: 1679–1687



[30]Wu T, Zhang H T, Wang Y, Jia W S, Xu X F, Zhang X Z, Han Z H. Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malusxiaojinensis. J Exp Bot, 2012, 63: 859–870



[31]Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum K D, Coruzzi G M. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA, 2011, 108: 18524–18529



[32]Glass A D M. The regulation of potassium absorption of barley roots. Plant Physiol, 1975, 56: 377–380



[33]Glass A D M. Regulation of potassium absorption in barley roots: an allosteric model. Plant Physiol, 1976, 58: 33–37



[34]Jensen P, Pettersson S. Nutrient uptake in roots of scotch pine (Pinussylvestris). In: Persson T ed. Ecological Bulletins No. 32, Structure and Function of Northern Coniferous Forests: An Ecosystem Study. 1980, pp. 229–237



[35]Jensen P. Control of K+ (Rb+) influx and transport with changed internal K+ concentration and age in 2 varieties of barley. Physiol Plant, 1980, 49: 291–295



[36]Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol, 1975, 75: 479–490



[37]Wiersum L K. Influence of water-content of sand on rate of uptake of Rubidium-86. Nature, 1958, 181: 106–107



[38]Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculite soil. Field Crops Res, 1990, 23: 187–203



[39]De Jager A. Effects of localized supply of acid phosphate nitrate sulfate calcium and potassium on the production and distribution of dry matter in young maize (Zea mays) plants. Neth J Agr Sci, 1982, 30: 193–204



[40]Ma Q F, Rengel Z, Bowden B. Heterogeneous distribution of phosphorus and potassium in soil influences wheat growth and nutrient uptake. Plant Soil, 2007, 291: 301–309

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!