欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 122-133.doi: 10.3724/SP.J.1006.2014.00122

• 耕作栽培·生理生化 • 上一篇    下一篇

钵苗机插密度对不同类型水稻产量及光合物质生产特性的影响

朱聪聪1,张洪程1,2,*,郭保卫1,2,曹利强1,江峰1,葛梦婕1,花劲1,宋云生1,周兴涛1,霍中洋1,2,许轲1,2, 戴其根1,2,魏海燕1,2,朱大伟1   

  1. 扬州大学农业部长江流域稻作技术创新中心, 江苏扬州 225009; 2 江苏省杂交晚粳工程技术研究中心, 江苏扬州 225009
  • 收稿日期:2013-03-29 修回日期:2013-09-16 出版日期:2014-01-12 网络出版日期:2013-10-22
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B03), 江苏省农业科技自主创新基金项目(CX[10]129)和江苏省农业三项工程项目[SX(010)2000-012052]资助。

Effect of Planting Density on Yield and Photosynthate Production Characteristics in Different Types of Rice with Bowl Mechanical-Transplanting Method

ZHU Cong-Cong1,ZHANG Hong-Cheng1,2,*,GUO Bao-Wei1,2,CAO Li-Qiang1,JIANG Feng1,GE Meng-Jie1,HUA Jin1,SONG Yun-Sheng1,ZHOU Xing-Tao1,HUO Zhong-Yang1,2,XU Ke1,2,Dai Qi-Gen1,2,WEI Hai-Yan1,2,ZHU Da-Wei1   

  1. 1 Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China;
    2 Jiangsu Engineering Technology Center for Hybrid Japonica Rice, Yangzhou 225009, China
  • Received:2013-03-29 Revised:2013-09-16 Published:2014-01-12 Published online:2013-10-22
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn

摘要:

在南方稻区大面积应用的常规粳稻、杂交粳稻、杂交籼稻中各选两个代表性品种为材料, 根据钵苗机插不同穴距设置高、中、低3种密度处理, 并以常规塑盘毯状育苗机插为对照, 比较研究钵苗机插不同密度对水稻光合物质生产及产量的影响。结果表明, 钵苗机插水稻各生育期茎蘖数随栽插密度的降低而减小, 剑叶叶绿素含量及光合特征参数变化则呈相反趋势。单茎干物重、茎叶转运及净同化率均以低密度最大, 中密度次之, 高密度最低。常规粳稻抽穗后干物质积累量、群体生长率和光合势等指标随密度的降低极显著减小, 成熟期群体干物重高密度平均较中、低密度分别高3.0%7.6%, 高、中密度的最终产量分别较对照增产11.8%8.9%, 低密度与CK无显著差异。杂交稻各群体生长指标以中密度最大, 高密度实产介于中、低密度之间, 杂交籼稻高密度处理与低密度相当, 显著低于中密度。

关键词: 水稻, 钵苗机插, 密度, 产量, 光合物质生产

Abstract:

 In order to study the impacts of planting density of nutrition bowl seedling mechanical-transplanting rice on photosynthate production and yield, a field experiment was conducted using conventional japonica rice Nanjing 44, Wuyunjing 24, japonica hybrid rice Yongyou 8, Changyou 5, and indica hybrid rice Liangyoupeijiu, II you 084 which have been widely grown in the southern China with high, medium and low density treatments of the different hill spacings in nutrition bowl mechanical-transplanting (12 cm, 14 cm, and 16 cm), and the conventional blanket seedling mechanical- transplanting as control. The results showed that, the tiller number of nutrition bowl mechanical-transplanting rice in the critical period and the declining rate of leaf area after heading decreased with the reduction of planting density, the productive tiller percentage increased significantly, while the chlorophyll content of flag leaf and the photosynthetic parameters presented the opposite trend. The dry matter weight of single stem, the matter transportation amount in stem and leaf, and the net assimilation rate were all the highest in the low density treatment, the medium in medium density treatment, and the lowest in high density treatment. After heading, the dry matter accumulation, population growth rate, photosynthetic potential and other indicators of conventional japonica rice decreased significantly with the reduction of planting density. The average dry matter weight of population in high density treatment at maturity stage was 11.8% and 8.9% higher than that in medium density treatment and low density treatment respectively, and without significant difference between the low density treatment and control. For the population growth indexes of hybrid rice, medium density treatment was the highest, and there was no significant difference between high density treatment and low density treatments. The actual yield in high density treatment was between that in medium and low density treatments, besides, that in high density treatment of indica hybrid rice was equal to that in low density treatment, but significantly lower than that in medium density treatment by 3.0%. Consequently, for conventional japonica rice and varieties with big panicle and numerous grain in agricultural production, the hill spacing of 12 centimeters could reach high yield, while for hybrid rice and big heavy panicle varieties, increasing the hill spacing appropriately was helpful to improve the percentage of spike-forming tillers and develop the advantage of panicle type, resalting in high yielding and high efficiency production.

Key words: Rice, Nutrition bowl mechanical-transplanting, Density, Yield, Photosynthetic matter production

[1]朱德峰, 陈惠哲. 水稻机插秧发展与粮食安全. 中国稻米, 2009, (6): 4–7



Zhu D F, Chen H Z. Development ofmechanical-transplanting rice and food safety. China Rice, 2009, (6): 4–7 (in Chinese)



[2]朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43: 474–479



Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43: 474–479 (in Chinese with English abstract)



[3]张洪程, 戴其根, 苏祖芳. 机栽小苗水稻生育规律及高产途径的研究. 江西农业大学报, 1989, (11): 63–71



Zhang H C, Dai Q G, Su Z F. The study on the growing laws and high yield methods of little mechanical- transplanting seedlings (supplement). Jiangxi Agric Univ News, 1989, (11): 63–71 (in Chinese with English abstract)



[4]张洪程, 李杰, 戴其根, 霍中洋, 许轲, 魏海燕, 钱银飞, 黄大山. 机插稻“标秧、精插、稳发、早搁、优中、强后”高产栽培精确定量关键技术. 中国稻米, 2010, 16(5): 1–6



Zhang H C, Li J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Qian Y F, Huang D S, Xia Y. Raising standardized seed-lings, quantitative transplanting by machine, tillering stable, draining paddy field early, optimizing middle growth, strengthening late growth—precise and quantitative key technology for high yielding cultivation with manual and mechanical transplantation. China Rice, 2010, 16(5): 1–6 (in Chinese)



[5]张洪程, 赵品恒, 孙菊英, 吴贵成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39–44



Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q-G, Huo Z-Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2): 39–44 (in Chinese with English abstract)



[6]陈俊岩. 水稻钵育苗摆栽机械化技术试验分析. 湖南农机, 1999, (6): 25–27



Chen J Y. The analysis on the technology of rice nutrition bowl mechanical- transplanting. Hunan Agric Mach, 1999, (6): 25–27 (in Chinese with English abstract)



[7]孙志勇. 水稻钵体育苗与机械摆栽在农业生产中的应用. 农民致富之友, 2003, (5): 24



Sun Z Y. The application of rice bowl-raising and mechanical place-Translating technology in the agriculture production. Friends Farmers Get Rich, 2003, (5): 24 (in Chinese)



[8]仙北谷康.大規模稲作農家の展開過程に関する研究. 農業経営研究, 1989, (15): 29–43



Senbokukoku Kou. The research on the evolution of large-scale rice. Agric Manag Res, 1989, (15): 29–43 (in Japanese)



[9]岡山大学農学部附属農場. 運営概要. 岡山大学農学部農場報告, 1987, (10): 37–48



Agricultural College of Okayama University Affiliated Farm. Operating overview. The Report of Agricultural College of Okayama University affiliated farm, 1987, (10): 37–48 (in Japanese)



[10]邴延忠, 陈宗凯. 水稻钵苗移栽机械化技术研发与应用. 农机科技推广, 2011, (4): 52



Bing Y Z, Chen Z K. The research and application of rice nutrition bowl seedling mechanical-transplanting technology. Agric Mach Technol Extension, 2011, (4): 52 (in Chinese with English abstract)



[11]孙德超, 李晓东, 姜阿利, 汪曼. 水稻钵育秧苗机插技术特点及其优势. 农业机械, 2010, (20): 69



Sun D C, Li X D, Jiang A L, Wang M. The characteristics and advantages of rice nutrition bowl seedling mechanical-transplanting technology. Agric Mach, 2010, (20): 69 (in Chinese)



[12]张洪程. 钵苗机插水稻生产特点及其利用的核心技术. 农机市场, 2012, (8): 19–21



Zhang H C. Use of nutrition bowl mechanical- transplanting rice and it’s dry matter production characteristic. Agric Mach Market, 2012, (8): 19–21 (in Chinese)



[13]兴化水稻百亩方单产再创记录. http://js.xhby.net/system/2012/11/05/015121432.shtml



Rice yield make a new record in Xinghua county. http://js.xhby.net/system/2012/11/05/015121432.shtml



[14]钱银飞. 不同穗型水稻品种机插规格的综合研究. 扬州大学农学院博士学位论文, 2009. p 55



Qian Y F. Studies on Effect of Transplanting Pattern on Different Panicle Type Mechanical transplanted Rice. PhD Dissertation of Yangzhou University, 2009 (in Chinese with English abstract)



[15]李木英, 石庆华, 王涛, 方慧铃, 潘晓华, 谭雪明. 种植密度对双季超级稻群体发育和产量的影响. 杂交水稻, 2009, 24(2): 72–77



Li M Y, Shi Q H, Wang T, Fang H L, Pan X H, Tan X M. Effects of different transplanting densities on the population development and grain yield of double cropping super rice. Hybrid Rice, 2009, 24(2): 72–77 (in Chinese with English abstract)



[16]张荣萍, 戴红燕, 蔡光泽, 马均, 肖勇. 不同栽插密度对有色稻产量和群体质量的影响. 中国农学通报, 2009, 25(16): 123–127



Zhang R P, Dai H-Y, Cai G Z, Ma J, Xiao Y. Effects of different density on yield and population growth quality in colored rice. Chin Agric Sci Bull, 2009, 25(16): 123–127 (in Chinese with English abstract)



[17]贾汝志, 王立余, 李忠武, 武仲科, 李冬梅, 姚兰. 水稻不同插秧密度试验总结. 北方水稻, 2007, (2): 39–40



Jia R Z, Wang L Y, Li Z W, Wu Z K, Li D M, Yao L. Summary on the experiment of transplanting density in rice. North Rice, 2007, (2): 39–40 (in Chinese with English abstract)



[18]龙旭. 水稻强化栽培不同移栽秧龄、密度的研究. 四川农业大学硕士学位论文, 2003. pp 21–22



Long X. Study on the Different Seedling Ages and Densities of SRI. MS Thesis of Sichuan University, 2003. pp 21–22 (in Chinese with English abstract)



[19]翟超群. 播期和移栽密度对淮北中粳稻两个品种产量形成及品质的影响. 扬州大学硕士学位论文, 2007. pp 26–30



Zhuo C Q. Effects of Different Sowing Date and Planting Density on Yield Formation and Quality of Two Medium Japonica Rice Varieties in Huaibei. MS Thesis of Yangzhou University, 2007. pp 26–30 (in Chinese with English abstract)



[20]陆阳平, 张选怀. 水稻超高产栽培密度与肥料试验总结. 安徽农业科学, 2007, 35: 5112



Lu Y P, Zhang X H. The super-high-yield rice cultivation density and fertilizer test summary. J Anhui Agric Sci, 2007, 35: 5112 (in Chinese with English abstract)



[21]郎有忠, 王美娥, 吕川根, 张祖建, 朱庆森. 水稻叶片形态、群体结构和产量对种植密度的响应. 江苏农业学报, 2012, 28(1): 7–11



Lang Y Z, Wang M E, Lü C G, Zhang Z J, Zhu Q S. Response of leaf morphology, population structure and yield to planting density in rice. 2012, 28(1): 7-11 (in Chinese with English abstract)



[22]吴春赞, 叶定池, 林华, 倪日群, 赖联赛, 林辉. 栽插密度对水稻产量及品质的影响. 中国农学通报, 2005, 9: 190–191



Wu C Z, Ye D C, Lin H, Ni R Q, Lai L S, Lin H. Effects of transplanting density on rice yield and its quality. Chin Agric Sci Bull, 2005, 21(9): 190–191 (in Chinese with English abstract)



[23]徐春梅, 王丹英, 邵国胜, 章秀福. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响. 中国水稻科学, 2008, 22: 507–512



Xu C M, Wang D Y, Shao G S, Zhang X F. Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22. Chin J Rice Sci, 2008, 22: 507–512 (in Chinese with English abstract)



[24]郑克武, 邹江石, 吕川根. 氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利用的影响. 作物学报, 2006, 32: 885-893



Zheng K W, Zou J S, Lü C G. Effects of transplanting density and nitrogen fertilizer on yield formation and N absorption in a two-line intersubspecific hybrid rice/Liangyoupeijiu. Acta Agron Sin, 2006, 32: 885–893 (in Chinese with English abstract)



[25]林洪鑫, 潘晓华, 石庆华, 彭春瑞, 吴建富. 施氮量与栽插密度对超级早稻中早22产量的影响. 植物营养与肥料学报, 2011, 17: 22–28



Lin H X, Pan X H, Shi Q H, Peng C R, Wu J F. Effects of nitrogen fertilization and planting density on yield of super early rice Zhongzao 22. Plant Nutr Fert Sci, 2011, 17: 22–28 (in Chinese with English abstract)



[26]陈必安. 钵育摆栽技术试验示范. 农机科技推广, 2008, (1): 55–56



Chen B A. The demonstration of rice bowl-raising and place-translating technology experiment. Agric Mach Technol Extension, 2008, (1): 55–56 (in Chinese)



[27]成永芳. 日本RX-6型水稻钵苗移栽机引进试验简报. 粮油加工与食品机械, 1999, (3): 28



Cheng Y F. The bulletin on the introduction experiment of Japanese RX-6 rice Bowl-Raising and Place-Translating machine. Cereals Oils Proc, 1999, (3): 28 (in Chinese)



[28]王圣田, 栾云. 钵育摆栽技术综述. 黑龙江科技信息, 2009, (13): 111



Wang S T, Luan Y. The review of rice bowl-raising and place-translating technology. Heilongjiang Sci Technol Inform, 2009, (13): 111 (in Chinese)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!