欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1392-1402.doi: 10.3724/SP.J.1006.2014.01392

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦自噬相关基因ATG10的克隆及白粉菌侵染诱导的ATG10的表达

张微1,孙鸿1,邢莉萍2,卫晓静1,王华忠1,*   

  1. 1 天津师范大学生命科学学院 / 天津市动植物抗性重点实验室, 天津 300387; 2 南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2013-11-20 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: 王华忠, E-mail: skywhz@mail.tjnu.edu.cn
  • 基金资助:

    天津市自然科学基金重点项目(12JCZDJC23000), 霍英东教育基金会高等院校青年教师基金(131026)和天津市动植物抗性重点实验室开放基金项目资助。

Cloning of Autophagy-Related Genes, ATG10s, in Wheat and Their Expression Characteristics Induced by Blumeria graminis f. sp. tritici

ZHANG Wei1,SUN Hong1,WEI Xiao-Jing1,XING Li-Ping2,WANG Hua-Zhong1,*   

  1. 1 School of Life Sciences, Tianjin Normal University / Tianjin Key Laboratory of Animals and Plants Resistance, Tianjin 300387, China; 2 National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2013-11-20 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Contact: 王华忠, E-mail: skywhz@mail.tjnu.edu.cn

摘要:

细胞自噬是一种保守的真核生物细胞内物质分解和循环利用机制, 在植物生长、发育和逆境响应等过程中均扮演了重要角色。自噬相关蛋白ATG10是参与自噬小体形成的关键因子之一。利用同源克隆方法, 从经白粉病菌诱导48 h的小麦材料92R137/扬麦1587中克隆了ATG10基因家族3个成员(TaATG10aTaATG10bTaATG10c)。序列特征分析、物种间的比较和进化分析, 以及酵母功能互补实验结果证实, 3个基因均为酵母ATG10的功能性同源基因。TaATG10aTaATG10b的基因组序列具有相似的6外显子-5内含子基因结构。RT-PCR分析还发现这2个基因都具有2种可变剪接产物。TaATG10aTaATG10bGFP融合蛋白被定位于洋葱表皮细胞的细胞质中。白粉菌侵染能够诱导TaATG10aTaATG10b表达, 因此推测, 小麦针对白粉菌侵染的免疫反应涉及对TaATG10及其参与的自噬过程的调控, 其调控模式因小麦抗、感白粉病反应、不同类型抗病基因介导的免疫反应和不同遗传背景下的感病反应而差异明显, 说明TaATG10及其参与的自噬过程与小麦—白粉菌互作反应关系的复杂性。从外源激素处理诱导的表达情况还发现, 抗、感白粉病的表型差异可能涉及抗、感材料TaATG10基因对同种激素(SA、乙烯或ABA)信号的不同响应模式。

关键词: 小麦, 自噬相关基因, 白粉病

Abstract:

Autophagy, a conserved eukaryotic cellular process functioning in material decomposition and nutrient recycling, is deeply involved in plant growth, development, and response to stresses. ATG10 is one of the key factors required in autophagosome formation. In this study, we identified three members (TaATG10a, TaATG10b, and TaATG10c) of the ATG10 family in common wheat 92R137/Yangmai 1587 induced by Blumeria graminis f. sp. tritici for 48 h, using homologous cloning technique. The three TaAGT10s shared high similarity with their counterparts from other model plants. Expression of TaATG10a or TaATG10b rescued the autophagy process in ATG10-defective yeast mutant, suggesting that both genes are functional homologues of yeast ATG10. TaATG10a and TaATG10b had similar gene models containing six exons and five introns, and both had two alternatively-spliced mRNA isoforms according to RT-PCR assay. TaATG10a- and TaATG10b-GFP fusion structures were located in cytosol of onion epidermal cells. The expression of TaATG10a and TaATG10b was induced by the infection of Blumeria graminis f. sp. tritici (Bgt), implying that TaATG10s and their involved autophagy process are implicated in the wheat immune response to Bgt. This implication is very complex because the regulated expression profiles of TaATG10a and TaATG10b are different between resistant and susceptible reactions, between different types of resistance gene-mediated immune reactions, and between susceptible reactions on different genetic backgrounds. Besides, exogenous phytohormones also modulated TaATG10a and TaATG10b expressions. The difference of Bgt immune reaction between the resistant and susceptible genotypes might result partially from the different response patterns of TaATG10sto exogenous salicylic acid, ethylene, or abscisic acid.

Key words: Triticum aestivum L., Autophagy-related genes, Powdery mildew

[1]Yoshimoto K. Beginning to understand autophagy: an intracellular self-degradation system in plants. Plant Cell Physiol, 2012, 53: 1355–1365



[2]Liu Y, Bassham D C. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol, 2012, 63: 215–237



[3]Majeski A E, Dice J F. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36: 2435–2444



[4]Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993, 333: 169–174



[5]Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf D H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett, 1994, 349: 275–280



[6]Kim S H, Kwon C, Lee J H, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells, 2012, 34: 413–423



[7]王燕, 刘玉乐. 植物细胞自噬研究进展. 中国细胞生物学学报, 2010, 32: 677–689



Wang Y, Liu Y L. Progress in plant autophagy. Chin J Cell Biol, 2010, 32: 677–689 (in Chinese with English abstract)



[8]Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001, 2: 211–216



[9]Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George M D, Klionsky D J, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature, 1998, 395: 395–398



[10]Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007, 282: 37298–37302



[11]Chung T, Phillips A R, Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J, 2010, 62: 483–493



[12]Phillips A R, Suttangkakul A, Vierstra R D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178: 1339–1353



[13]Lenz H D, Haller E, Melzer E, Gust A A, Nürnberger T. Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy, 2011, 7: 773–774



[14]Lenz H D, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham D C, Vierstra R D, Parker J E, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn R A, Gust A A, Nürnberger T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J, 2011, 66: 818–830



[15]Shin J H, Yoshimoto K, Ohsumi Y, Jeon J S, An G. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells, 2009, 27: 67–74



[16]Seay M, Patel S, Dinesh-Kumar S P. Autophagy and plant innate immunity. Cell Microbiol, 2006, 8: 899–906



[17]Hayward A P, Tsao J, Dinesh-Kumar S P. Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol, 2009, 20: 1041–1047



[18]Wang Y, Nishimura M T, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J, 2011, 68: 74–87



[19]Scott A, Wyatt S, Tsou P L, Robertson D, Allen N S. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 1999, 26: 1125–1132



[20]Gietz R D, Schiestl R H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 35–37



[21]Fujiki Y, Yoshimoto K, Ohsumi Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol, 2007, 143: 1132–1139



[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[23]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710



[24]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90



[25]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J; International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[26]Kaiser S E, Qiu Y, Coats J E, Mao K, Klionsky D J, Schulman B A. Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy, 2013, 9: 778–780



[27]Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002, 129: 1181–1193



[28]Ketelaar T, Voss C, Dimmock S A, Thumm M, Hussey P J. Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett, 2004, 567: 302–306



[29]Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121: 567–577



[30]Mansilla Pareja M E, Colombo M I. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front Cell Infect Microbiol, 2013, 3: 54



[31]Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis D I, Petersen N H, Mattsson O, Jørgensen L B, Jones J D, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell, 2009, 137: 773–783



[32]章珍, 刘新红, 翟洪翠, 王华忠. 小麦Pm21 基因调控的白粉菌早期侵染抑制和寄主细胞反应. 作物学报, 2011, 37: 67–73



Zhang Z, Liu X H, Zhai H C, Wang H Z. Primary infection suppression of Blumeria graminis f. sp. tritici and host cell responses regulated by Pm21 gene in wheat. Acta Agron Sin, 2011, 37: 67-73 (in Chinese with English abstract)



[33]曹学仁, 周益林, 段霞瑜, 宋玉立, 何文兰, 丁克坚, 王保通, 夏先春. 我国主要麦区101个小麦品种(系)的抗白粉病基因推导. 麦类作物学报, 2010, 30: 948–953



Cao X R, Zhou Y L, Duan X Y, Song Y L, He W L, Ding K J, Wang B T, Xia X C. Postulation of wheat powdery mildew resistance genes in 101 wheat cultivars (lines) from major wheat regions in china. J Triticeae Crops, 2010, 30: 948–953 (in Chinese with English abstract)



[34]Thomma B P, Penninckx I A, Broekaert W F, Cammue B P. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol, 2001, 13: 63–68



[35]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227



[36]Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci, 2009, 14: 310–317



[37]Chen Y J, Perera V, Christiansen M W, Holme I B, Gregersen P L, Grant M R, Collinge D B, Lyngkjær M F. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol Biol, 2013, 83: 577–590



[38]Wawrzynska A, Christiansen K M, Lan Y, Rodibaugh N L, Innes R W. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol, 2008, 148: 1510–1522



[39]Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 2009, 21: 2914–2927

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!