欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 240-250.doi: 10.3724/SP.J.1006.2015.00240

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达

马春雷1,2,姚明哲1,王新超1,金基强1,2,马建强1,陈亮1,*   

  1. 1 中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室, 浙江杭州 310008; 2 中国农业科学院研究生院, 北京 100081
  • 收稿日期:2014-06-18 修回日期:2014-09-30 出版日期:2015-02-12 网络出版日期:2014-11-18
  • 通讯作者: 陈亮,E-mail: liangchen@mail.tricaas.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-23),国家自然科学基金项目(31100504, 31170624, 30901159), 浙江省自然科学基金项目(Y3100291)和国家科技支撑计划项目(2011BAD01B01)资助。

Cloning and Expression of Three Genes Involved in the Biosynthesis of Chlorophyll in Different Albescent Stages of “Baiye 1”

MA Chun-Lei1,2,YAO Ming-Zhe1,WANG Xin-Chao1,JIN Ji-Qiang1,2,MA Jian-Qiang1,CHEN Liang1,*   

  1. 1 Tea Research Institute of Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China; 2 Graduate School of Chinese Academy of Agriculture Sciences, Beijing 100081, China
  • Received:2014-06-18 Revised:2014-09-30 Published:2015-02-12 Published online:2014-11-18
  • Contact: 陈亮,E-mail: liangchen@mail.tricaas.com

摘要:

高等植物叶绿素的生物合成对其正常光合作用起关键作用。本文根据前期芯片杂交结果, 采用RT-PCR和RACE技术克隆了3个茶树叶绿素合成相关基因, 分别为谷氨酸-tRNA还原酶(CsGluTR)、叶绿素合酶(CsChlS)、叶绿素酸醋氧化酶(CsCAO), 对应的GenBank的登录号为HQ660371、HQ660370、HQ660369。序列分析表明, CsGluTR基因全长2165 bp, 开放阅读框长1665 bp, 编码554个氨基酸, 推测的蛋白分子量约为60.6 kD, 理论等电点为8.78;CsChlS基因全长1463 bp, 其中开放阅读框长1125 bp, 编码374个氨基酸, 推测的蛋白分子量约为40.5 kD, 理论等电点为8.58;CsCAO基因全长2146 bp, 其中开放阅读框长1611 bp, 编码536个氨基酸, 推测的蛋白分子量约为60.8 kD, 理论等电点为8.03。比对分析表明, 3个基因编码的氨基酸序列与其他植物中同源基因的相似性均在70%以上。利用荧光定量PCR技术检测3个基因在不同白化阶段的表达,表明, CsChlS和CsCAO基因具有明显的表达协同性, 它们在叶片中的表达量与叶片的颜色变化高度同步;而CsGluTR在白化叶片和正常叶片中的表达差异相对较小, 同时在新生芽叶转绿过程中最先恢复正常表达水平。说明在白化叶片中, 叶绿素的合成机制受到较大影响, 叶绿素合成受阻导致的叶片内色素类物质含量降低或消失是叶片白化的直接原因。

关键词: 茶树, 谷氨酸-tRNA还原酶, 叶绿素合酶, 叶绿素酸醋氧化酶, 基因克隆, 表达分析

Abstract:

Chlorophyll is one of the main pigments participating in photosynthesis in plant chloroplasts, and its biosynthesis is crucial for higher plant. In this article, we cloned and characterized three important genes involved in the biosynthesis of chlorophyll which were CsGluTR, CsChlS, and CsCAO (GenBank accession number HQ660371, HQ660370, and HQ660369) lead on the results of cDNA microarray hybridization. The full-length cDNA of CsGluTR was 2165 bp, containing a 1665 bp ORF encoding a 554 amino acids protein, and its 3′untranslated region had an obvious polyadenylation signal. The deduced protein molecular weight was 60.6 kD and its theoretical isoelectric point was 8.78. The obtained cDNA of CsChlS was 1463 bp in length, containing a 1125 bp ORF which encoded 374 amino acid residues. The deduced protein molecular weight was 40.5 kD and its theoretical isoelectric point was 8.58. The full-length of CsCAO was 2146 bp, containing a 1611 bp ORF encoding a 536 amino acids protein. The deduced amino acid sequence of CsGluTR, CsChlS, and CsCAO from tea plant shared high identity with those of other species, for instance the similarity of 79%, 90% and 77 % with Vitis vinifera, respectively. The result of Real-time RT-PCR analysis showed a coordinated expression of CsChlS and CsCAO, which was corresponded with the change of the albino phenotype. However, there were small changes in the expression level of CsGluTR between the normal and albino leaves. These results implied that the biosynthesis of chlorophyll is completely hindered in albino leaves, causing the decline of pigment content and the albino phenotype.

Key words: Tea plant (Camellia sinensis), Glutamyl-tRNA reductase, Chlorophyll synthase, Chlorophyllide a oxygenase, Gene cloning, Expression analysis

[1]Nagata N, Tanaka R, Satoh S, Tanaka A. Identifieation of a vinyl reduetase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus Species. Plant Cell, 2005, 17: 233–240

[2]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312

[3]吴自明, 张欣, 万建民. 叶绿素生物合成的分子调控. 植物生理学通讯, 2008, 44: 1064–1070

Wu Z M, Zhang X, Wan J M. Molecular regulation of chlorophyll biosynthesis. Plant Physiol Commun, 2008, 44: 1064–1070 (in Chinese with English abstract)

[4]欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37: 1860–1867

Ou L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin, 2011, 37: 1860–1867 (in Chinese with English abstract)

[5]Zhao H B, Guo H J, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119–126

[6]Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133–138

[7]张立科, 李志彬, 刘海燕, 李如海, 陈满元, 陈爱国, 钱益亮, 华泽田, 高用明, 朱苓华, 黎志康. 两个新的水稻叶色突变体形态结构与遗传定位研究. 中国农业科学, 2010, 43: 223–229

Zhang L K, Li Z B, Liu H Y, Li R H, Chen M Y, Chen A G, Qian Y L, Hua Z T, Gao Y M, Zhu L H, Li Z K. Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin, 2010, 43: 223–229 (in Chinese with English abstract)

[8]Karaca M, Saha S, Callahan F E, Jenkins J N, Read J J, Percy R G. Molecular and cytological characterization of a cytoplasmic-specific mutant in pima cotton (Gossypium barbadense L.). Euphytica, 2004, 139: 187–197

[9]Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, mor-phogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48–62

[10]刘元义, 游继芳. “安吉白茶”可持续发展的调查与研究. 茶叶, 2013, 39: 75–78

Liu Y Y, You J F. A study on sustainable development of ‘Anji Baicha’ industry. J Tea, 2013, 39: 75–78 (in Chinese with English abstract)

[11]李素芳. 安吉白茶返白机理的研究. 中国计量学院学报, 2002, 13: 214–217

Li S F. Studies on the mechanism of the leaf color change in Anji Baicha (Camellia sinensis). J China Inst Metrol, 2002, 13: 214–217 (in Chinese with English abstract)

[12]成浩, 李素芳, 陈明. 安吉白茶特异性状的生理生化本质. 茶叶科学, 1999, 19: 87–92

Cheng H, Li S F, Chen M. Physiological and biochemical essence of the extraordinary characters of Anji Baicha. J Tea Sci, 1999, 19: 87–92 (in Chinese with English abstract)

[13]陆建良, 梁月荣, 倪雪华, 汪湖北. 安吉白茶阶段性返白过程中的生理生化变化. 浙江农业大学学报, 1999, 25: 245–247

Lu J L, Liang Y R, Ni X H, Wang H B. Changes of physiological and biochemical characters during stage albescent process of Anji Baicha. J Zhejiang Agric Univ, 1999, 25: 245–247 (in Chinese with English abstract)

[14]Ma C L, Chen L, Wang X C, Jin J Q, Ma J Q, Yao M Z, Wang Z L. Differential expression analysis of different albescent stages of ‘Anji Baicha’(Camellia sinensis (L.) O. Kuntze) using cDNA microarray. Sci Hort, 2012, 148: 246–254

[15]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X and Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415

[16]马春雷, 姚明哲, 王新超, 金基强, 陈亮. 茶树2个MYB转录因子基因的克隆及表达分析. 林业科学, 2012, 48: 31–37

Ma C L, Yao M Z, Wang X C, Jin J Q, Chen L. Cloning and expression of two MYB transcription factors in tea plant (Camellia sinensis). Sci Silvae Sin, 2012, 48: 31–37 (in Chinese with English abstract)

[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2?ΔΔCt method. Methods, 2001, 25: 402–408

[18]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire M K, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Lu S, Marchler G H, Song J S, Thanki N, Yamashita R A, Zhang D, Bryant S H. CDD: a conserved domain database for the functional annotation of proteins. Nucl Acids Res, 2013, 41: D348–352

[19]Br?uer L, Brandt W, Schulze D, Zakharova S, Wessjohann L. A structural model of the membrane-bound aromatic prenyltransferase UbiA from E. coli. Chembiochem, 2008, 9: 982–992

[20]Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol, 1996, 110: 1223–1230

[21]徐培洲, 李云, 袁澍, 张红宇, 彭海, 林宏辉, 汪旭东, 吴先军. 叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究. 中国农业科学, 2006, 39: 1299–1305

Xu P Z, Li Y, Yuan S, Zhang H Y, Peng H, Lin H H, Wu X J. Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin, 2006, 39: 1299–1305 (in Chinese with English abstract)

[22]马建强, 姚明哲, 陈亮. 茶树遗传图谱研究进展. 茶叶科学, 2010, 30: 329–335

Ma J Q, Yao M Z, Chen L. Research progress in genetic map of tea plant (Camellia sinensis). J Tea Sci, 2010, 30: 329–335 (in Chinese with English abstract)

[23]邢才, 王贵学, 黄俊丽, 吴金钟. 植物叶绿素突变体及其分子机理的研究进展. 生物技术通报, 2008, (5): 10–13

Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotech Bull, 2008, (5): 10–13 (in Chinese with English abstract)

[24]王让剑. 茶树叶绿素生物合成及其检测与提取研究进展. 福建农业学报, 2012, 27: 1401–1408

Wang R J. Biosynthesis, detection and extraction of tea chlorophyll. Fujian J Agric Sci, 2012, 27: 1401–1408 (in Chinese with English abstract)

[25]Moser J, Schubert W D, Beier V, Bringemeier I, Jahn D, Heinz D W. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J, 2001, 20: 6583–6590

[26]Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000, 122: 49–56

[27]Tanaka A, Ito H, Tanaka R, Tanaka N K, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyII a. Proc Natl Acad Sci USA, 1998, 95: 12719–12723

[28]Bougri O, Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J, 1996, 9: 867–878

[29]Rudiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochem, 1997, 46: 1151–1167

[30]Paulsen H, Rümler U, Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta, 1990, 181: 204–211

[31]Gaubier P, Wu H J, Laudie M, Delseny M, Grellet F. A chlorophyll synthetase gene from Arabidopsis thaliana. Mol General Genet, 1995, 249: 58–64

[32]Lopez J C, Ryan S, Blankenship R E. Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol, 1996, 178: 3369–3373

[33]Schmid H C, Oster U, Koegel J, Lenz S, Ruediger W. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem, 2001, 382: 903–911

[34]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[35]Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J, 2000, 21: 305–310

[36]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818

[37] 王新超, 赵丽萍, 姚明哲, 陈亮, 杨亚军. 安吉白茶正常与白化叶片基因表达差异的初步研究. 茶叶科学, 2008, 28: 50–55

Wang X C, Zhao L P, Yao M Z, Chen L, Yang Y J. Preliminary study on gene expression differences between normal leaves and albino leaves of Anji Baicha (Camellia sinensis cv. Baiye1). J Tea Sci, 2008, 28: 50–55 (in Chinese with English abstract)

[38]李娟, 刘硕谦, 刘仲华, 李勤, 吴扬, 邓婷婷, 黄建安. ‘安吉白茶’抑制消减杂交cDNA文库的构建及初步分析. 中国农学通报, 2011, 27: 96–101

Li J, Liu S Q, Liu Z H, Li Q, Wu Y, Deng T T, Huang J A. Construction and preliminary analyses of SSH cDNA libraries of Anji Baicha (Camellia sinensis). Chin Agric Sci Bull, 2011, 27: 96–101 (in Chinese with English abstract)

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[12] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[15] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!