欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 251-258.doi: 10.3724/SP.J.1006.2015.00251

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

软质小麦溶剂保持力关联分析

张勇,张晓,郭杰,高德荣,张伯桥*   

  1. 江苏里下河地区农业科学研究所 / 农业部长江中下游小麦生物学与遗传育种重点实验室,江苏扬州225007
  • 收稿日期:2014-06-23 修回日期:2014-09-30 出版日期:2015-02-12 网络出版日期:2014-11-11
  • 通讯作者: 张伯桥,E-mail: zbq@wheat.org.cn, Tel: 0514-87340868
  • 基金资助:

    本研究由江苏省自然科学基金项目(BK2011429),国家高技术研究发展计划(863计划)项目(2012AA101105),江苏省“333”工程项目(BRA2013126)和江苏省“六大人才高峰”计划(NY-049)资助。

Association Analysis of Solvent Retention Capacity in Soft Wheat

ZHANG Yong,ZHANG Xiao,GUO Jie,GAO De-Rong,ZHANG Bo-Qiao*   

  1. Lixiahe Region Institute of Agricultural Sciences of Jiangsu Province / Key Laboratory of Biology and Genetic Improvement in Middle and Lower Yangtze Valley, Ministry of Agriculture, Yangzhou 225007, China
  • Received:2014-06-23 Revised:2014-09-30 Published:2015-02-12 Published online:2014-11-11
  • Contact: 张伯桥,E-mail: zbq@wheat.org.cn, Tel: 0514-87340868

摘要:

溶剂保持力(SRC)是软质小麦鉴定评价的重要指标。为获得与SRC关联的分子标记,提高育种效率,对不同硬度类型的176份品种的乳酸SRC、碳酸钠SRC、蔗糖SRC和水SRC进行SSR标记检测,并结合其在江苏里下河地区连续3个生长季的4种SRC表型数据,利用MLM模型进行了关联分析。以236对SSR引物共检测出1340个等变位变异,平均每个位点5.5个等位变异,平均PIC值为0.4663。共检测到28个关联位点(P < 0.005),单个位点可解释3.19%~21.84%的表型变异;与乳酸SRC、水SRC、蔗糖SRC和碳酸钠SRC相关联的位点分别为13、7、6和2个;与水SRC关联的gwm642-1D在3年中均被检测到。在这些关联位点上发现有利等位变异,其中降低水SRC的等位变异有gwm642-A186、gwm642-A188和gwm337-A178,降低蔗糖SRC的等位变异有gwm337-A178和gwm337-A186,降低碳酸钠SRC的等位变异有cfa2257-A129等。这些结果为利用分子标记进行SRC辅助选择提供了重要信息。

关键词: 小麦, 溶剂保持力, 分子标记, 关联分析

Abstract:

Solvent retention capacity (SRC) is an important index for identification and evaluation of soft wheat varieties. This study aimed at identifying SRC associated markers for marker-assisted selection. One hundred and seventy-six wheat varieties (lines) in different hardness types were screened with 236 pairs of SSR primers and their SRC values of lactic acid, water, sucrose, and sodium carbonate were evaluated in three growing seasons in Lixiahe, Jiangsu Province. The association analysis was carried out using the mixed-linear model (MLM). A total of 1340 fragments were amplified on the 236 SSR loci with an average of 5.5 alleles per locus. The average polymorphism information content was 0.4663. Twenty-eight loci were identified to be associated with lactic acid SRC (13), water SRC (7), sucrose SRC (6), and sodium carbonate SRC (2) at the significant level of P < 0.005, and a single locus explained 3.19%–21.84% of phenotypic variation. Marker gwm642 associated with WSRC was detected in three years. Some favorable alleles associated with SRCs were found, such as gwm642-A186, gwm642-A188, and gwm337-A178 for reducing water SRC, gwm337-A178 and gwm337-A186 for reducing sucrose SSRC, and cfa2257-A129 for reducing sodium carbonate SRC. These results are informative for marker-assisted selection on SRC properties in wheat.

Key words: Wheat, Solvent retention capacity (SRC), Molecular marker, Association analysis

[1]昝香存, 周桂英, 吴丽娜, 王爽, 胡学旭, 陆伟, 王步军. 我国小麦品质现状分析. 麦类作物学报, 2006, 26(6): 46–49

Zan X C, Zhou G Y, Wu L N, Wang S, Hu X X, Lu W, Wang B J. Present status of wheat quality in China. J Triticeae Crops, 2006, 26(6) : 46–49 (in Chinese with English abstract)

[2]张伯桥, 张晓, 高德荣, 吕国锋, 朱冬梅, 马谈斌. 吹泡仪参数作为弱筋小麦品质育种选择指标的评价. 麦类作物学报, 2010, 30: 29–33

Zhang B Q, Zhang X, Gao D R, Lü G F, Zhu D M, Ma T B. The value of alveograph parameters used as selection index in weak-gluten wheat breeding. J Triticeae Crops, 2010, 30: 29–33 (in Chinese with English abstract)

[3]何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划的研究. 中国农业科学, 2002, 35: 359–364

He Z H, Lin Z J, Wang L J, Xiao Z M, Wan F S, Zhuang Q S. Classification on Chinese wheat regions based on quality. Sci Agric Sin, 2002, 35: 359–364 (in Chinese with English abstract)

[4]姚金保, 马鸿翔, 张平平, 姚国才, 杨学明,张鹏. 中国弱筋小麦品质研究进展. 江苏农业学报, 2009, 25: 919–924

Yao J B, Ma H X, Zhang P P, Yao G C, Yang X M, Zhang P. Progress on soft wheat quality research in China. Jiangsu J Agric Sci, 2009, 25: 919–924 (in Chinese with English abstract)

[5]张晓, 张勇, 高德荣, 别同德, 张伯桥. 中国弱筋小麦育种进展及生产现状. 麦类作物学报, 2012, 32: 184–189

Zhang X, Zhang Y, Gao D R, Bie T D, Zhang B Q. The Development and present of weak-gluten situation of its wheat breeding production. J Triticeae Crops, 2012, 32: 184–189 (in Chinese with English abstract)

[6]Haynes L C, Bettge A D, Slade L. Soft wheat and flour products methods review: solvent retention capacity equation correction. Cereal Foods World, 2009, 54: 174–175

[7]Gaines C. Report of the AACC committee on soft wheat flour. Method 56-11, solvent retention capacity profile. Cereal Foods World, 2000, 45: 303-306

[8]Kweon M, Slade L, Levine H. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding: a review. Cereal Chem, 2011, 88: 537–552

[9]Souza E, Guttieri M J. Sources of variation in the solvent retention capacity test of wheat flour. Crop Sci, 2003, 43: 1628–1633

[10]夏云祥, 马传喜, 司红起, 乔玉强, 何贤芳. 小麦溶剂保持力的基因型和环境及其互作效应分析. 麦类作物学报, 2008, 28: 448–451

Xia Y X, Ma C X, Si H Q, Qiao Y Q, He X F. Effects of genotype, environment and genotype × environment interaction on solvent retention capacity in common wheat. J Triticeae Crops, 2008, 28: 448–451 (in Chinese with English abstract)

[11]Souza E, Bowen D, Gannon D, O’Brien K, Guttieri M J. Solvent retention capacities of irrigated soft white spring wheat flours. Crop Sci, 2001, 41: 1054–1061

[12]Guttieri M J, McLean R, Lanning S P, Talbert L E, Souza E J. Assessing environmental influences on solvent retention capacities of two soft white spring wheat cultivars. Cereal Chem, 2002, 79: 880–884

[13]张岐军, 何中虎, 闫俊, 钱森和, 张艳, 葛秀秀, 王继忠. 溶剂保持力在软质小麦品质评价中的应用. 麦类作物学报, 2004, 24(4): 140–142

Zhang Q J, He Z H, Yan J, Qian S H, Zhang Y, Ge X X, Wang J Z. Application of Solvent Retention Capacity in Soft Wheat Quality Evaluation. J Triticeae Crops, 2004, 24(4): 140–142 (in Chinese with English abstract)

[14]Guttieri M J, Becker C, Souza E J. Application of wheat meal solvent retention capacity tests within soft wheat breeding populations. Cereal Chem, 2004, 81: 261-266

[15]姚金保, Souza E, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏. 软红冬小麦品质性状与饼干直径的关系. 作物学报, 2010, 36: 695–700

Yao J B, Souza E, Ma H X, Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P. Relationship between quality traits of soft red winter wheat and cookie diameter. Acta Agron Sin, 2010, 36: 695–700 (in Chinese with English abstract)

[16]Pasha I, Anjum F M, Butt M. Genotypic variation of spring wheats for solvent retention capacities in relation to end-use quality. LWT-Food Sci Technol, 2009, 42: 418–423

[17]Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374

[18]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289

[19]Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064

[20]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461–485

[21]Bryant R, Proctor A, Hawkridge M, Jackson A, Yeater K, Counce P, Yan W, McClung A, Fjellstrom R. Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica, 2011, 139: 1383–1398

[22]张焕欣,翁建峰,张晓聪,刘昌林,雍洪军,郝转芳,李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40: 1–6

Zhang H X, Weng J F, Zhang X C, Liu C L, Yong H J, Hao Z F, Li X H, Genome-wide association analysis of kernel row number in maize. Acta Agron Sin, 2014, 40: 1–6 (in Chinese with English abstract)

[23]Niedziela A, Bednarek P T, Cichy H, Budzianowski G, Kilian A, Aniol A. Aluminum tolerance association mapping in triticale. BMC Genomics, 2012, 13: 67

[24]Wang L, Ge H, Hao C, Dong Y, Zhang X. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PloS One, 2012, 7: e29432

[25]Campbell K G, Finney P L, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Siritunga D, Zhu J Q, Gendre F, Roué C, Vérel A, Sorrells M E. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci, 2001, 41: 1275–1285

[26]Smith N, Souza E, Sneller C, Sorrells M, Griffey C, Ohm H, Van-Sanford D, Guttieri M J, Sturbaum A K. Association analysis of soft wheat quality traits in eastern US soft winter wheat. 2008 Joint Annual Meeting of ASA-CSSA-SSSA. Oct 3-7, 2008, Houston, TX,USA

[27]Bettge A D, Morris C F, Demacon V L, Kidwell K K. Adaption of AACC method 56-11, Solvent retention capacity, for use as an early generation selection for cultivar development. Cereal Chem, 2002, 79: 670–674

[28]周淼平, 吴宏亚, 余桂红, 张旭, 马鸿翔. 小麦溶剂保持力微量测定方法的建立. 江苏农业学报, 2007, 23: 270–275

Zhou M P, Wu H Y, Yu G H, Zhang X, Ma H X. Microdetermination of solvent retention capacity in wheat. Jiangsu J Agric Sci, 2007, 23: 270–275 (in Chinese with English abstract)

[29]Van der Beek J G, Verkerk R, Zabel P, Lindhout P. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet, 1992, 84: 106–112

[30]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194

[31]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129

[32]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959

[33]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620

[34]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208

[35]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114

[36]张勇, 金艳, 张伯桥, 张晓, 徐亮, 徐扬, 徐辰武, 程顺和. 不同来源品种在长江下游麦区的溶剂保持力特性及相关分析. 麦类作物学报, 2012, 32: 750–756

Zhang Y, Jin Y, Zhang B Q, Zhang X, Xu L, Xu Y, Xu C W, Cheng S H. Characteristics of solvent retention capacity (SRC) of different varieties planted in the low Yangtze wheat region and analysis on their correlations. J Triticeae Crops, 2012, 32: 750–756 (in Chinese with English abstract)

[37]张勇, 金艳, 张伯桥, 张晓, 徐亮, 徐扬, 程顺和, 徐辰武. 我国不同麦区小麦品种的面粉溶剂保持力. 作物学报, 2012, 38: 2131–2137

Zhang Y, Jin Y, Zhang B Q, Zhang X, Xu L, Xu Y, Cheng S H, Xu C W. Solvent retention capacities of varieties from different wheat regions in China. Acta Agron Sin, 2012, 38: 2131–2137 (in Chinese with English abstract)

[38]马庆. 小麦溶剂保持力的QTL定位及其与加工品质的关系, 扬州: 扬州大学硕士论文, 江苏扬州, 2009

Ma Q. QTL Mapping for Common Wheat SRC and Relationship with Processing Quality. MS Thesis of Yangzhou University,Yangzhou, China, 2009 (in Chinese with English abstract)

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[11] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!