作物学报 ›› 2015, Vol. 41 ›› Issue (02): 259-275.doi: 10.3724/SP.J.1006.2015.00259
殷桂香,张磊*,佘茂云*
YIN Gui-Xiang,ZHANG Lei*,SHE Mao-Yun
摘要:
植物TRK-HKT家族基因广泛介导植物Na+/K+运输,参与植物耐逆境胁迫调控。本研究以6个大豆钾利用效率差异品种为材料,利用in silico技术克隆到4个大豆TRK-HKT家族成员(GmHKT1;1、GmHKT1;2、GmHKT1;3和GmHKT1;4)。采用qRT-PCR技术解析这些基因在低钾及逆境胁迫下的表达机制。结果表明,GmHKT1;2在大豆幼苗根中对低钾胁迫的响应明显高于其他3个基因,且钾高效大豆品种这种响应更明显;同时GmHKT1;2对不同逆境胁迫(低温、干旱、高盐和ABA)也有较强的响应。蛋白结构分析表明,仅GmHKT1;2具有4个MPM结构域,4个保守的氨基酸残基空间上形成一个“漏斗样”结构,充当K+/Na+转运通道,通过邻近的ATP结合结构域,为K+/Na+转运提供能量。基因结构分析显示,这些基因均含3个外显子和2个内含子,不同基因间的第一个外显子和内含子片段大小差异显著,导致各基因的基因组DNA (gDNA)大小各异。启动子分析揭示,大豆TRK-HKT家族成员包含参与种子功能定位和各种激素及逆境胁迫应激反应的重要顺式作用元件;进化上该家族基因位于第一进化分支,含保守的Ser–Gly–Gly–Gly基序。
[1]Wang Y, Wu W H. Plant sensing and signaling in response to K+-deficiency. Mol Plant, 2010, 3: 280–287[2]Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006, 57: 425–436[3]Epstein E, Rains D W, Elzam O E. Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA, 1963, 49: 684–692[4]Fairbairn D J, Liu W, Schachtman D P, Gomez-Gallego S, Day S R, Teasdale R D. Characterization of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol, 2000, 43: 515–525[5]Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol, 2000, 122: 1249–1259[6]Berthomieu P, Conéjéro G, Nublat A, Brackenbury W J, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P A, Tester M, Véry A A, Sentenac H, Casse F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003, 22: 2004–2014[7]Rubio F, Schwarz M, Gassmann W, Schroeder J I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem, 1999, 274: 6839–6847[8]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Gen, 2005, 37: 1141–1146[9]Wang T B, Gassmann W, Rubio F, Schroeder J I, Glass D M. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol, 1998, 118: 651–659[10]Chen H, He H, Yu D. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plant, 2011, 141: 11–18[11]Chen H T, Chen X, Gu H P, Wu B Y, Zhang H M, Yuan X X, Cui X Y. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul, 2014, 73: 299–308[12]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740[13]Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655–658[14]Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J, 1996, 10: 869–882[15]Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270: 1660–1663[16]Aleman F, Nieves-Cordones M, Nieves-Cordones M, Martinez V, Rubio F. Root K(+) acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol, 2011, 52: 1603–1612[17]Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker E P, Sato Y, Goshima S, Uozumi N. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA, 2001, 98: 6488–6493[18]Durell S R, Hao Y, Nakamura T, Bakker E P, Guy H R. Evolutionary relationship between K+ channels and symporters. Biophys J, 1999, 77: 775–788[19]M?ser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker E P, Shinmyo A, Oiki S, Schroeder J I, Uozumi N. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA, 2002, 99: 6428–6433[20]Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451–476[21]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575–603[22]Waters S, Gilliham M, Hrmova M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci, 2013, 14: 7660–7680[23]Kader M A, Lindberg S. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot, 2005, 56: 3149–3158[24]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond.), 2003, 91: 503–527[25]M?ser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn D J, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman M R, Schroeder J I. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption ofthe Na+ transporter AtHKT1. FEBS Lett, 2002, 531: 157–161[26]Rus A, Lee B H, Mu?oz-Mayor A, Sharkhuu A, Miura K, Zhu J K, Bressan R A, Hasegawa PM. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol, 2004, 136: 2500–2511[27]Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung H Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder J I, Uozumi N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem parenchyma cells. Plant J, 2005, 44: 928–938[28]Horie T, Costa A, Kim T H, Han M J, Horie R, Leung H Y, Miyao A, Hirochika H, An G, Schroeder J I. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J, 2007, 26: 3003–3014[29]Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10: 1181–1191[30]Alemán F, Nieves-Cordones M, Martínez V, Rubio F. Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci, 2009, 176: 768–774[31]Zhu J K. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol, 2001, 4: 401–406[32]唐劲驰, 曹敏建, 祝子平, 闫洪奎, 刘绍鹏. 不同基因型大豆对低钾的耐性极限及缺钾症状研究简报. 大豆科学, 2001, 20: 295–297Tang J C, Cao M J, Zhu Z P, Yan H K, Liu S P. Resistence limit and symptom of different genotypes of soybean to low potassium. Soybean Sci, 2001, 20: 295–297 (in Chinese with English abstract)[33]权月伟, 李喜焕, 常文锁, 张彩英. 大豆耐低钾种质资源筛选研究. 华北农学报, 2011, 26(增刊): 51–55Quan Y W, Li X H, Chang W S, Zhang C Y. Screening of low potassium tolerant soybean (Glycine max) varieties from Hebei soybean-growing-areas. Acta Agric Boreali-Sin, 2011, 26 (suppl): 51–55 (in Chinese with English abstract)[34]王伟, 曹敏建, 綦左莹, 何萍, 许海涛. 不同大豆品种对钾素吸收和利用效率差异的比较研究. 大豆科学, 2007, 26: 561–564Wang W, Cao M J, Qi Z Y, He P, Xu H T. Comparison of potassium absorb and use efficiency in soybean (Glycine max L. Merr.) varieties. Soybean Sci, 2007, 26: 561–564 (in Chinese with English abstract)[35]Damien Platten J, Cotsaftis O, Berthomieu P, Bohnert H, Davenport R J, Fairbairn D J, Horie T, Leigh R A, Lin H X, Luan S, M?ser P, Pantoja O, Rodríguez-Navarro A, Schachtman D P, Schroeder J I, Sentenac H, Uozumi N, Véry A, Zhu J K, Dennis E S, Tester M. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci, 2006, 11: 372–374[36]Kato N, Akai M, Zulkifli L, Matsuda N, Kato Y, Goshima S, Hazama A, Yamagami M, Guy H R, Uozumi N. Role of positively charged amino acids in the M2(D) transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels, 2007, 1: 161–171[37]Cao Y, Jin X, Huang H, Derebe M G, Levin E J, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson W A, Rost B, Javitch J A, Rajashankar K R, Jiang Y, Zhou M. Crystal structure of a potassium ion transporter, TrkH. Nature, 2011, 471: 336–340[38]Ardie S W, Xie L N, Takahashi R, Liu S K, Takano T. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot, 2009, 60: 3491–3502[39]Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotech, 2012, 30: 360–366[40]Ali Z, Park H C, Ali A, Oh D H, Aman R, Kropornicka A, Hong H, Choi W, Chung W S, Kim W Y, Bressan R A, Bohnert H J, Lee S Y, Yun D J. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol, 2012, 158: 1463–1474[41]Asins M J, Villalta I, Aly M M, Olías R, álvarez De Morales P, Huertas R, Li J, Jaime-Pérez N, Haro R, Raga V, Carbonell E A, Belver A. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ, 2013, 36: 1171–1191[42]Almeida P, de Boer G J, de Boer A H. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. J Plant Physiol, 2014, 171: 438–447[43]Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M. A two-stage model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One, 2012, 7: e39865[44]Lan W Z, Wang W, Wang S M, Li L G, Buchanan B B, Lin H X, Gao J P, Luan S. A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci USA, 2010, 107: 7089–7094[45]Koltunow A M, Truettner J, Cox K H, Wallroth M, Goldberg R. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell, 1990, 2: 1201–1224[46]Schauer A, Ranes M, Santamaria R, Guijarro J, Lawlor E, Mendez C, Chater K, Losick R. Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. Science, 1988, 240: 768–772[47]McGuire S E, Roman G, Davis R L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet, 2004, 20: 384–391[48]Liang P, Acerboukh L, Pardee A B. Distribution and cloning of eukarytic mRNAs by means of differential display: refinements and optimization. Nucl Acids Res, 1993, 21: 3269–3275 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[15] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
|