欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (04): 620-626.doi: 10.3724/SP.J.1006.2018.00620

• 研究简报 • 上一篇    

耐盐小麦中TaSC基因启动子的克隆及调控功能分析

焦博(), 柏峰, 李艳艳, 路佳, 张肖, 曹艺茹, 葛荣朝, 赵宝存*()   

  1. 河北师范大学生命科学学院, 河北石家庄 050024
  • 收稿日期:2017-08-22 接受日期:2018-01-08 出版日期:2018-01-26 网络出版日期:2018-01-26
  • 通讯作者: 赵宝存
  • 作者简介:

    408850814@qq.com

  • 基金资助:
    本研究由国家自然科学基金项目(30871471)和河北省自然科学基金项目(C2011205085)资助

Cloning and Regulation Function Analysis of TaSC Promoter from Salt Tolerant Wheat

Bo JIAO(), Feng BAI, Yan-Yan LI, Jia LU, Xiao ZHANG, Yi-Ru CAO, Rong-Chao GE, Bao-Cun ZHAO*()   

  1. College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2017-08-22 Accepted:2018-01-08 Published:2018-01-26 Published online:2018-01-26
  • Contact: Bao-Cun ZHAO
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (30871471) and the Natural Science Foundation of Hebei Province (C2011205085).

摘要:

高盐是小麦的主要非生物胁迫因子之一, 发掘小麦耐盐品种中的相关基因, 分析其调控机理, 有助于解析小麦耐盐性机制。本文利用TAIL-PCR和电子克隆的方法, 从耐盐小麦RH8706-49中克隆了耐盐基因TaSC的启动子序列, 命名为ProTaSC。该DNA序列中存在多个顺式作用元件, 包含与非生物胁迫响应有关的ABA响应元件(ABRE)和MYB蛋白结合位点(MBS)各1个。以GUS为报告基因, 对克隆的启动子序列及不同长度的5′端缺失片段的表达活性分析表明, 克隆的全长片段及2个5′端缺失的片段(681 bp和1096 bp)均能启动GUS表达, 而小于等于343 bp的片段不具备启动功能, 说明ProTaSC中从-681位到-343位核苷酸之间的区域为核心启动子区。在ProTaSC:GUS转基因拟南芥的根、叶片、花药、萼片及成熟角果的果荚壳中均检测到GUS蛋白, 而在主茎、花瓣、幼果和种子中没有检测到GUS, 表明ProTaSC是组织表达特异性启动子。对ProTaSC:GUS转基因拟南芥在NaCl (200 mmol L-1)和ABA (10 μmol L-1)胁迫处理后的GUS定量分析表明, ProTaSC是受NaCl和ABA显著诱导表达的功能序列。

关键词: 小麦, 耐盐突变体RH8706-49, TaSC基因启动子, TAIL-PCR, 表达活性

Abstract:

High salinity is one of the major abiotic stress factors in wheat. Exploring stress related genes from salt-tolerant wheat varieties and analyzing their regulatory mechanism are helpful for elucidating the salt tolerance mechanism in wheat. In this study, the promoter sequence of a salt-tolerant related gene TaSC, designated ProTaSC, was cloned from salt-tolerant wheat mutant RH8706-49 by TAIL-PCR and silicon cloning method. A series of cis-acting elements including abscisic acid response element (ABRE), MYB protein binding site (MBS), TATA-box and CAAT-box were predicted in the promoter region. Among them ABRE and MBS are involved in abiotic stress responses. Beta-glucuronidase gene was used as reporter to study the expression characteristic of ProTaSC, showing that the full-length fragment and two 5'-progressive deletion fragments (681 bp and 1096 bp) were able to trigger GUS expression. However, GUS expression was undetectable when the fragment was less than 343 bp. These results suggest that the full-length promoter has promoting activity and the sequence between -681 to -343 nucleotides is the basic core region of ProTaSC. ProTaSC is a tissue-specific promoter because GUS gene driven by full-length ProTaSC was expressed in root, leaf, anther, sepals, and mature pods, but not in stem, petal, young fruit, and seed of Arabidopsis harboring ProTaSC:GUS. Quantification of GUS activity assay showed that ProTaSC was induced significantly by NaCl (200 mmol L-1) and ABA (10 μmol L-1) in the transgenic Arabidopsis seedlings, indicating ProTaSC is a functional sequence induced by NaCl or ABA treatment.

Key words: wheat, salt-tolerant wheat mutant RH8706-49, TaSC promoter, TAIL-PCR, expression activity

图1

用于构建GUS报告载体的TaSC启动子的不同长度片段示意图"

图2

TaSC基因启动子的克隆 A: RH8706-49的基因组DNA; B: TaSC基因启动子的TAIL-PCR扩增; C: TaSC基因的启动子扩增; M: DL2000 ladder, 条带自上而下的分子量依次外2000、1000、750、500、200和100 bp; 1: SP3和AD4的三扩结果(箭头所示为目的片段); 2: SP2和AD4的二扩结果; 3: SP3引物自扩结果; 4: TaSC启动子的扩增结果, 箭头示启动子ProTaSC扩增片段。"

图3

小麦耐盐突变体RH8706-49的TaSC启动子的DNA序列蓝色斜体字母表示TAIL-PCR的扩增结果; 下画虚线表示TATA盒; 下画实线表示CAAT盒; 阴影表示其他功能顺式作用元件, 元件名称备注在序列下方, 其中ABRE元件(CACGTG )和MBS元件(CAACTG)与高盐等逆境胁迫响应有关。"

图4

转不同长度ProTaSC片段的拟南芥GUS组织化学染色结果 A: 转1419 bp启动子; B: 转1096 bp片段启动子; C: 转681 bp片段启动子; D: 转343 bp片段启动子; E: 转152 bp片段启动子。"

图5

转全长启动子ProTaSC拟南芥不同组织的GUS染色结果 A: 根; B: 茎上叶; C: 莲座叶; D: 花、幼嫩果荚和茎; E: 盛开的花; F: 成熟的角果。"

图6

不同胁迫条件下转基因拟南芥的GUS定量分析**和 ***分别表示胁迫处理与对照(0 h)在0.01和0.001概率水平的差异显著性(t检验)。"

附图1

耐盐小麦RH8706-49中ProTaSC+TaSC序列与中国春(Triticum aestivum L.)基因组序列的比对 ProTaSC+TaSC: 小麦RH8706-49中TaSC基因的cDNA序列(557 bp)及其启动子(1419 bp), 红色线条标注TaSC的起始密码子(ATG)和终止密码子(TAA); Traes_5DL_50BA3A: 中国春的4266 bp的基因组DNA序列, 其中含内含子2290 bp。"

[1] Munns R, Gillihan M.Salinity tolerance of crops—what is the cost?New Phytol, 2015, 208: 668-673
[2] Zhang X K, Zhou Q H, Cao J H, Yu B J.Differential Cl-/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. J Agron Crop Sci, 2011, 197: 329-339
[3] Hasegawa P M.Sodium (Na+) homeostasis and salt tolerance of plants.Environ Exp Bot, 2013, 92: 19-31
[4] Munns R, James R A, Läuchli A.Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot, 2006, 57: 1025-1043
[5] Bohnert H J, Nelson D E, Jensen R G.Adaptations to environmental stresses.Plant Cell, 1995, 7: 1099-1111
[6] Holmström K, Mäntylä E, Welin B, Mandal A, Palva E.Drought tolerance in tobacco.Nature, 1996, 379: 683-684
[7] Becker D, Hoth S, Ache P, Wenkel S, Roelfsema M R G, Meyerhoff O, Hartung W, Hedrich R. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett, 2003, 554: 119-126
[8] Yamaguchi-Shinozaki K, Shinozaki K.Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress- inducible transcription factor. In: Novartis Foundation Symposium, 2001, pp 176-186; 186-189
[9] Zhou M L, Ma J T, Zhao Y M, Wei Y H, Tang Y X, Wu Y M.Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene, 2012, 506: 10-17
[10] Xiao F H, Xue G P.Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit.Plant Cell Rep, 2001, 20: 667-673
[11] Guo L, Yu Y H, Xia X L, Yin W L.Identification and functional characterization of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol, 2010, 10: 1-16
[12] Liu Y G, Whittier F R.Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics, 1995, 25: 674-681
[13] 张晓, 张锐, 孙国清, 史计, 孟志刚, 周焘, 侯思宇, 梁成真, 于源华, 郭三堆. 优化的反向PCR结合TAIL-PCR法克隆棉花线粒体atpA双拷贝基因及其侧翼序列. 生物工程学报, 2012, 28: 104-115
Zhang X, Zhang R, Sun G Q, Shi J, Meng Z G, Zhou T, Hou S Y, Liang C Z, Yu Y H, Guo S D.High efficiency genome walking method for flanking sequences of cotton mitochondrial double-copy atpA gene based on optimized inverse PCR and TAIL-PCR.Biotechnol Bull, 2012, 28: 104-115 (in Chinese with English abstract)
[14] Chen X L, Song R T, Yu M Y, Sui J M, Wang J S, Qiao L X.Cloning and functional analysis of the chitinase gene promoter in peanut.Genet Mol Res, 2015, 14: 12710-12722
[15] Luo K, Zhang G F, Deng W, Luo F T, Qiu K, Pei Y.Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco.Plant Cell Rep, 2008, 27: 707-717
[16] Wu A M, Ling C, Liu J Y.Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006, 163: 426-435
[17] Wu A, Liu J G.Isolation of the promoter of a cotton beta- galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Sci China C Life Sci, 2006, 49: 105-114
[18] Xu J Y, Cao J J, Cao D M, Zhao T T, Huang X, Zhang P Q, Luan F X.Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.Acta Biochim Biophys Sin, 2013, 45: 416-421
[19] Hettiarachchi G H, Yadav V, Reddy M K, Chattopadhyay S, Sopory S K.Light-mediated regulation defines a minimal promoter region of TOP2.Nucl Acids Res, 2003, 31: 5256-5265
[20] Huang X, Zhang Y, Jiao B, Chen G P, Huang S H, Guo F, Shen Y Z, Huang Z J, Zhao B C.Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis, J Exp Bot, 2012, 63: 5463-5473
[21] 沈银柱, 刘植义, 何聪芬, 黄占景, 孟庆昌, 柏峰, 马闻师, 赵松山, 陆莉, 张焕英. 诱发小麦花药愈伤组织及其再生植株抗盐性变异的研究. 遗传, 1997, 45(6): 7-11
Shen Y Z, Liu Z Y, He C F, Huang Z J, Meng Q C, Bai F, Ma W S, Zhao S S, Lu L, Zhang H Y.A Study of salt-resistant variations induced in anther calli and regenerated plants in wheat.Hereditas(Beijing), 1997, 45(6): 7-11 (in Chinese with English abstract)
[22] Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide.Nat Protoc. 2006, 1: 2320-2325
[23] Liu Y G, Chen Y L.High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.Biotechniques. 2007, 43: 649-656
[24] An G.Binary Ti vectors for plant transformation and promoter analysis.Methods Enzymol, 1987, 153: 292-305
[25] Clough S J, Bent A F.Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743
[26] Jefferson R A, Kavanagh T A, Bevan M W.GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.EMBO J, 1987, 6: 3901-3907
[27] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal Biochem, 1976, 72: 248-254
[28] Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K.A combination of the Arabidopsis DREB1A gene and stress- inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell & Physiol, 2004, 45: 346-350
[29] Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z.Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene,GmDREB3, in soybean(Glycine max L.). J Exp Bot, 2009, 60: 121-135
[30] Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K.Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.Plant J, 2007, 51: 617-630
[31] Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K.Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions.Plant Physiol, 2010, 153: 185-197
[32] Klingler J P, Batelli G, Zhu J K.ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot, 2010, 61: 3199-3210
[33] Fujii H, Verslues P E, Zhu J K.Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA, 2011, 108: 1717-1722
[34] Wang R, Jing W, Xiao L Y, Jin Y K, Shen L K, Zhang W H.The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor 1.Plant Physiol, 2015, 168: 1076-1090
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!