作物学报 ›› 2018, Vol. 44 ›› Issue (04): 620-626.doi: 10.3724/SP.J.1006.2018.00620
• 研究简报 • 上一篇
焦博(), 柏峰, 李艳艳, 路佳, 张肖, 曹艺茹, 葛荣朝, 赵宝存*()
Bo JIAO(), Feng BAI, Yan-Yan LI, Jia LU, Xiao ZHANG, Yi-Ru CAO, Rong-Chao GE, Bao-Cun ZHAO*()
摘要:
高盐是小麦的主要非生物胁迫因子之一, 发掘小麦耐盐品种中的相关基因, 分析其调控机理, 有助于解析小麦耐盐性机制。本文利用TAIL-PCR和电子克隆的方法, 从耐盐小麦RH8706-49中克隆了耐盐基因TaSC的启动子序列, 命名为ProTaSC。该DNA序列中存在多个顺式作用元件, 包含与非生物胁迫响应有关的ABA响应元件(ABRE)和MYB蛋白结合位点(MBS)各1个。以GUS为报告基因, 对克隆的启动子序列及不同长度的5′端缺失片段的表达活性分析表明, 克隆的全长片段及2个5′端缺失的片段(681 bp和1096 bp)均能启动GUS表达, 而小于等于343 bp的片段不具备启动功能, 说明ProTaSC中从-681位到-343位核苷酸之间的区域为核心启动子区。在ProTaSC:GUS转基因拟南芥的根、叶片、花药、萼片及成熟角果的果荚壳中均检测到GUS蛋白, 而在主茎、花瓣、幼果和种子中没有检测到GUS, 表明ProTaSC是组织表达特异性启动子。对ProTaSC:GUS转基因拟南芥在NaCl (200 mmol L-1)和ABA (10 μmol L-1)胁迫处理后的GUS定量分析表明, ProTaSC是受NaCl和ABA显著诱导表达的功能序列。
[1] | Munns R, Gillihan M.Salinity tolerance of crops—what is the cost?New Phytol, 2015, 208: 668-673 |
[2] | Zhang X K, Zhou Q H, Cao J H, Yu B J.Differential Cl-/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. J Agron Crop Sci, 2011, 197: 329-339 |
[3] | Hasegawa P M.Sodium (Na+) homeostasis and salt tolerance of plants.Environ Exp Bot, 2013, 92: 19-31 |
[4] | Munns R, James R A, Läuchli A.Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot, 2006, 57: 1025-1043 |
[5] | Bohnert H J, Nelson D E, Jensen R G.Adaptations to environmental stresses.Plant Cell, 1995, 7: 1099-1111 |
[6] | Holmström K, Mäntylä E, Welin B, Mandal A, Palva E.Drought tolerance in tobacco.Nature, 1996, 379: 683-684 |
[7] | Becker D, Hoth S, Ache P, Wenkel S, Roelfsema M R G, Meyerhoff O, Hartung W, Hedrich R. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett, 2003, 554: 119-126 |
[8] | Yamaguchi-Shinozaki K, Shinozaki K.Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress- inducible transcription factor. In: Novartis Foundation Symposium, 2001, pp 176-186; 186-189 |
[9] | Zhou M L, Ma J T, Zhao Y M, Wei Y H, Tang Y X, Wu Y M.Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene, 2012, 506: 10-17 |
[10] | Xiao F H, Xue G P.Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit.Plant Cell Rep, 2001, 20: 667-673 |
[11] | Guo L, Yu Y H, Xia X L, Yin W L.Identification and functional characterization of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol, 2010, 10: 1-16 |
[12] | Liu Y G, Whittier F R.Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics, 1995, 25: 674-681 |
[13] | 张晓, 张锐, 孙国清, 史计, 孟志刚, 周焘, 侯思宇, 梁成真, 于源华, 郭三堆. 优化的反向PCR结合TAIL-PCR法克隆棉花线粒体atpA双拷贝基因及其侧翼序列. 生物工程学报, 2012, 28: 104-115 |
Zhang X, Zhang R, Sun G Q, Shi J, Meng Z G, Zhou T, Hou S Y, Liang C Z, Yu Y H, Guo S D.High efficiency genome walking method for flanking sequences of cotton mitochondrial double-copy atpA gene based on optimized inverse PCR and TAIL-PCR.Biotechnol Bull, 2012, 28: 104-115 (in Chinese with English abstract) | |
[14] | Chen X L, Song R T, Yu M Y, Sui J M, Wang J S, Qiao L X.Cloning and functional analysis of the chitinase gene promoter in peanut.Genet Mol Res, 2015, 14: 12710-12722 |
[15] | Luo K, Zhang G F, Deng W, Luo F T, Qiu K, Pei Y.Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco.Plant Cell Rep, 2008, 27: 707-717 |
[16] | Wu A M, Ling C, Liu J Y.Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006, 163: 426-435 |
[17] | Wu A, Liu J G.Isolation of the promoter of a cotton beta- galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Sci China C Life Sci, 2006, 49: 105-114 |
[18] | Xu J Y, Cao J J, Cao D M, Zhao T T, Huang X, Zhang P Q, Luan F X.Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.Acta Biochim Biophys Sin, 2013, 45: 416-421 |
[19] | Hettiarachchi G H, Yadav V, Reddy M K, Chattopadhyay S, Sopory S K.Light-mediated regulation defines a minimal promoter region of TOP2.Nucl Acids Res, 2003, 31: 5256-5265 |
[20] | Huang X, Zhang Y, Jiao B, Chen G P, Huang S H, Guo F, Shen Y Z, Huang Z J, Zhao B C.Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis, J Exp Bot, 2012, 63: 5463-5473 |
[21] | 沈银柱, 刘植义, 何聪芬, 黄占景, 孟庆昌, 柏峰, 马闻师, 赵松山, 陆莉, 张焕英. 诱发小麦花药愈伤组织及其再生植株抗盐性变异的研究. 遗传, 1997, 45(6): 7-11 |
Shen Y Z, Liu Z Y, He C F, Huang Z J, Meng Q C, Bai F, Ma W S, Zhao S S, Lu L, Zhang H Y.A Study of salt-resistant variations induced in anther calli and regenerated plants in wheat.Hereditas(Beijing), 1997, 45(6): 7-11 (in Chinese with English abstract) | |
[22] | Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide.Nat Protoc. 2006, 1: 2320-2325 |
[23] | Liu Y G, Chen Y L.High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.Biotechniques. 2007, 43: 649-656 |
[24] | An G.Binary Ti vectors for plant transformation and promoter analysis.Methods Enzymol, 1987, 153: 292-305 |
[25] | Clough S J, Bent A F.Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743 |
[26] | Jefferson R A, Kavanagh T A, Bevan M W.GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.EMBO J, 1987, 6: 3901-3907 |
[27] | Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal Biochem, 1976, 72: 248-254 |
[28] | Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K.A combination of the Arabidopsis DREB1A gene and stress- inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell & Physiol, 2004, 45: 346-350 |
[29] | Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z.Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene,GmDREB3, in soybean(Glycine max L.). J Exp Bot, 2009, 60: 121-135 |
[30] | Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K.Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.Plant J, 2007, 51: 617-630 |
[31] | Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K.Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions.Plant Physiol, 2010, 153: 185-197 |
[32] | Klingler J P, Batelli G, Zhu J K.ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot, 2010, 61: 3199-3210 |
[33] | Fujii H, Verslues P E, Zhu J K.Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA, 2011, 108: 1717-1722 |
[34] | Wang R, Jing W, Xiao L Y, Jin Y K, Shen L K, Zhang W H.The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor 1.Plant Physiol, 2015, 168: 1076-1090 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|