欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1386-1396.doi: 10.3724/SP.J.1006.2023.24054

• 耕作栽培·生理生化 • 上一篇    下一篇

等碳量添加生物炭和秸秆对烟田土壤呼吸及净碳收支的影响

符云鹏(), 刘天, 李耀鑫, 柳渊博, 王静, 金佳威, 蒋伟峰, 刘咏艳, 杨洋, 云菲()   

  1. 河南农业大学烟草学院/烟草行业烟草栽培重点实验室, 河南郑州 450002
  • 收稿日期:2022-03-10 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-10-24
  • 通讯作者: *云菲, E-mail: yunfeifei55@126.com
  • 作者简介:E-mail: yunpengfu@henau.edu.cn
  • 基金资助:
    中国烟草总公司河南省公司科技项目(2020410000270020);河南省烟草公司济源市公司项目(2020410881240045);河南省自然科学基金青年科学基金项目(212300410160)

Effects of adding biochar and straw with equal carbon content on soil respiration and net carbon budget in tobacco field

FU Yun-Peng(), LIU Tian, LI Yao-Xin, LIU Yuan-Bo, WANG Jing, JIN Jia-Wei, JIANG Wei-Feng, LIU Yong-Yan, YANG Yang, YUN Fei()   

  1. College of Tobacco Science, Henan Agricultural University/Key Laboratory of Tobacco Cultivation of China Tobacco Industry, Zhengzhou 450002, Henan, China
  • Received:2022-03-10 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-10-24
  • Contact: *E-mail: yunfeifei55@126.com
  • Supported by:
    Science and Technology Project of China National Tobacco Corporation Henan Province(2020410000270020);Jiyuan Company Project of Henan Tobacco Company(2020410881240045);Youth Science Fund Project of Henan Natural Science Foundation(212300410160)

摘要:

研究生物炭和秸秆添加对烟田生态系统土壤呼吸及碳收支的影响, 阐明生物炭、秸秆以及二者配施处理烟田的固碳效应。2020—2021年, 设置常规施肥(CK)、常规施肥+2.25 t hm-2生物炭-C (T1)、常规施肥+2.25 t hm-2秸秆-C (T2)、常规施肥+1.125 t hm-2生物炭-C+1.125 t hm-2秸秆-C (T3) 4个处理, 对不同组分土壤呼吸及土壤主要环境因子、土壤碳增量、作物净初级生产力固碳量以及进行农业生产造成的碳排放进行了测定。结果表明, 添加秸秆、秸秆与生物炭配施处理烤烟生育期内土壤呼吸累计排放碳量显著高于对照(P<0.05), 提升幅度分别为21.40%~35.45%、5.90%~9.89%; 添加生物炭、秸秆处理土壤自养呼吸占比分别较对照提高6.35%~7.34%、3.21%~5.97%, 生物炭与秸秆配施处理仅2021年较对照提升3.91%。添加生物炭、秸秆提高了生育期内土壤温度和水分, 单施生物炭处理土壤水分显著提高了1.93%~7.07%。土壤主要环境因子中, 土壤温度对土壤呼吸速率影响最大, 二者呈极显著正相关; 添加秸秆、生物炭与秸秆配施处理土壤呼吸速率与土壤湿度呈显著正相关。各处理生态系统固碳量均为正值, 表示为“碳汇”, 其中添加生物炭不仅可增加净初级生产力(NPP)固碳量以及土壤固碳量, 还可降低烟草生长季内土壤呼吸累积碳排放量, “碳汇”能力最强。因此, 施用生物炭是降低烟田土壤呼吸碳排放, 增强烟田生态系统“碳汇”能力的最佳途径。

关键词: 生物炭, 秸秆, 土壤呼吸, 碳收支

Abstract:

To clarify the carbon sequestration effect of biochar, straw and their combined application in tobacco field, the effects of biochar and straw addition on soil respiration and carbon budget of tobacco ecosystem were explored. From 2020 to 2021, four treatments including conventional fertilization (CK), conventional fertilization +2.25 t hm-2 biochar-C (T1), conventional fertilization +2.25 t hm-2 straw-C (T2), and conventional fertilization +1.125 t hm-2 biochar-C + 1.125 t hm-2 straw-C (T3) were conducted to measure soil respiration and main environmental factors of soil, soil carbon increment, carbon sequestration of net primary productivity of crops and carbon emissions caused by agricultural production. The results showed that the cumulative carbon emissions from soil respiration during the growth period of flue-cured tobacco treated with straw, straw and biochar were significantly higher than that of the control (P < 0.05), and the increase ranges were 21.40%-35.45% and 5.90%-9.89%, respectively. Compared with the control, the proportion of soil autotrophic respiration increased by 6.35%-7.34% and 3.21%-5.97% in the treatment of adding biochar and straw, respectively. The combined application of biochar and straw increased by 3.91% in 2021 compared with the control. The addition of biochar and straw increased the soil temperature and moisture during the growth period, and soil water content increased significantly by 1.93% to 7.07% under biochar treatment alone. Among the main environmental factors in soil, soil temperature had the greatest impact on soil respiration rate. Soil respiration rate was significantly positively correlated with soil temperature. There was a significant positive correlation between soil respiration rate and soil moisture in the treatment of adding straw, biochar, and straw. The carbon sequestration of ecosystem treated by all exogenous additives was positive, which was expressed as “carbon sink”. The addition of biochar could not only increase the carbon sequestration of net primary productivity (NPP) and soil carbon sequestration, but also reduce the cumulative carbon emissions of soil respiration in tobacco growing season, and the “carbon sink” ability was the strongest. Therefore, the application of biochar was the best way to reduce the carbon emission of soil respiration, which could enhance the “carbon sink” capacity of tobacco ecosystem.

Key words: biochar, straw, soil respiration, carbon budget

表1

各项农业物资的碳排放系数"

项目
Project
碳排放系数(以CE计)
Carbon emission coefficient (CE)
参考文献
Reference
氮肥 Nitrogen fertilizer (N) 1.74 kg kg-1 [17]
磷肥 Phosphate fertilizer (P2O5) 0.2 kg kg-1 [18]
钾肥 Potash fertilizer (K2O) 0.15 kg kg-1 [18]
农药 Pesticide 4.932 kg kg-1 [19]
柴油 Diesel 0.94 kg kg-1 [20]
人工 Artificial 0.245 kg d-1 [21]
烟苗 Tobacco seedling 1.724 g plant-1

图2

生物炭和秸秆添加下烟田土壤呼吸速率的动态变化 处理同图1。Treatments are the same as those given in Fig. 1."

表2

生物炭和秸秆添加下土壤呼吸CO2-C累计排放量"

年份Year CK T1 T2 T3
2020 3983.52±42.64 c 3833.65±35.02 c 5395.87±96.12 a 4218.47±142.40 b
2021 5696.96±128.73 c 5356.42±89.28 c 6916.35±142.83 a 6260.49±119.24 b

图3

添加生物炭和秸秆对烟株各部位固碳量的影响 同颜色横柱不同小写字母表示处理间差异显著(P < 0.05)。处理同图1。"

图4

添加生物炭和秸秆对烟田生态系统净初级生产力的影响 不同小写字母表示同一年份处理间差异显著(P < 0.05)。处理同图1。"

表3

土壤呼吸速率与土壤环境因子的拟合方程"

影响因素
Influence factor
处理
Treatment
2020 2021
拟合方程
Fitting equation
R2 P Q10 拟合方程
Fitting equation
R2 P Q10
土壤温度
Soil
temperature
CK Rt=0.63e0.0508T 0.6315 <0.01 1.66 Rt=0.167e0.107T 0.326 <0.05 2.92
T1 Rt=0.8088e0.052T 0.627 <0.01 1.47 Rt=0.216e0.0098T 0.372 <0.01 1.10
T2 Rt=0.8628e0.0386T 0.5524 <0.01 1.68 Rt=0.309e0.092T 0.307 <0.05 2.51
T3 Rt=1.0291e0.0357T 0.5334 <0.01 1.43 Rt=0.214e0.101T 0.35 <0.01 2.75
土壤湿度
Soil
moisture
CK Rt = -0.007W2+0.291W
+0.209
0.032 >0.05 Rt=0.003W2+0.002W
+2.316
0.508 <0.01
T1 Rt = -0.005W2+0.223W
+0.602
0.07 >0.05 Rt=0.001W2+0.056W
+2.278
0.367 <0.05
T2 Rt = -0.012W2+0.510W
-0.875
0.082 <0.05 Rt=0.005W2-0.05W
+3.4
0.541 <0.01
T3 Rt = -0.008W2+0.331W
-0.117
0.168 <0.05 Rt=0.004W2-0.017W
+2.889
0.455 <0.01

表4

生物炭和秸秆添加对烟田生态系统碳收支的影响"

系统碳汇/源各项
System carbon sink/Source
2020 2021
CK T1 T2 T3 CK T1 T2 T3
物料碳还田量
Amount of material carbon returning to field (Ci)
0 2250.00 2250.00 2250.00 0 2250.00 2250.00 2250.00
净初级生产力
Net primary productivity (CNPP)
3750.29 4287.37 4372.60 4374.14 3631.43 4186.60 4238.80 4309.15
土壤固碳量
Soil carbon sequestration (ΔSOC)
75.63 920.81 741.13 874.35 77.53 921.31 765.23 882.50
土壤呼吸
Soil respiration (Cr)
3983.52 3833.65 5395.87 4218.47 5696.96 5356.42 6916.35 6260.49
农业投入排放碳
Agricultural inputs emit carbon (Ce)
286.38 287.91 287.91 287.91 287.20 288.73 288.73 288.73
净固碳量
Net carbon sequestration
-443.99 3336.61 1679.95 2992.10 -2275.20 1712.76 48.95 892.42
[1] 2000-2020年全球主要地区和国家CO2排放量. 世界石油工业, 2021, 28(4): 81-82.
CO2 emissions of major regions and countries in the world from 2000 to 2020. World Petrol Ind, 2021, 28(4): 81-82. (in Chinese)
[2] Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-1994. Global Change Biol, 2002, 8: 800-812.
doi: 10.1046/j.1365-2486.2002.00511.x
[3] Kochy M, Hiederer R, Freibauer A. Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 2015, 1: 351-365.
doi: 10.5194/soil-1-351-2015
[4] Scharlemann J P W, Tanner E V J, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5: 81-91.
doi: 10.4155/cmt.13.77
[5] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582.
doi: 10.1038/nature08930
[6] Lei J S, Guo X, Zeng Y F, Zhou J Z, Gao Q, Yang Y F. Temporal changes in global soil respiration since 1987. Nat Commun, 2021, 12: 1801.
doi: 10.1038/s41467-021-22014-5
[7] Bond-Lamberty B, Bailey V L, Chen M, Gough C M, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature, 2018, 560: 80-83.
doi: 10.1038/s41586-018-0358-x
[8] Amelung W, Bossio D, de Vries W, Kogel-knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabb A. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020, 11: 5427.
doi: 10.1038/s41467-020-18887-7 pmid: 33110065
[9] Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kögel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56.
doi: 10.1038/nature10386
[10] FAO. Recarbonization of Global Soils: a Dynamic Response to Offset Global Emissions. 2019.
[11] Lin Y X, Ye G P, Kuzyakov Y, Liu D Y, Fan J B, Ding W X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem, 2019, 51: 187-196.
[12] Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res, 2012, 32: 119-130.
[13] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep, 2014, 4: 3687.
doi: 10.1038/srep03687 pmid: 24446050
[14] Wang J Y, Xiong Z Q, Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 2016, 8: 512-523.
doi: 10.1111/gcbb.2016.8.issue-3
[15] Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: a review. Soil Biol Biochem, 2011, 43: 1812-1836.
doi: 10.1016/j.soilbio.2011.04.022
[16] 田冬. 农田生态系统碳收支对秸秆与生物炭还田的响应. 西南大学硕士学位论文, 重庆, 2017.
Tian D. Response of Carbon Budget of Farmland Ecosystem to Straw and Biochar Returning. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract)
[17] 逯非, 王效科, 韩冰, 欧阳志云, 段晓男, 郑华. 中国农田施用化学氮肥的固碳潜力及其有效性评价. 应用生态学报, 2008, 19: 2239-2250.
Lu F, Wang X K, Han B, Ouyang Z Y, Duan X N, Zheng H. Carbon sequestration potential and effectiveness evaluation of chemical nitrogen fertilizer in farmland of China. Chin J Appl Ecol, 2008, 19: 2239-2250. (in Chinese with English abstract)
[18] Lal R. Agricultural activities and the global carbon cycle. Nutr Cycl Agron, 2004, 70: 103-116.
[19] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216
[20] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon fiux in agriculture: comparing tillage practices in the United States. Agric Ecol Environ, 2002, 91: 217-232.
doi: 10.1016/S0167-8809(01)00233-X
[21] 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法:误区、改进与应用: 兼析中国集约农作碳效率(续). 中国农业资源与区划, 2014, 35(1): 1-7.
Liu X H, Xu W X, Li Z J, Chu Q Q, Yang X L, Chen F. Farmland ecosystem carbon footprint method: misunderstanding, improvement and application: also an analysis of carbon efficiency of intensive farming in China (continued). Chin J Agric Resour Region Plant, 2014, 35(1): 1-7. (in Chinese)
[22] 何甜甜, 王静, 符云鹏, 符新妍, 刘天, 李亚坤, 李建华. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响. 环境科学, 2021, 42: 450-458.
He T T, Wang J, Fu Y P, Fu X Y, Liu T, Li Y K, Li J H. Effects of equal carbon addition of straw and biochar on soil respiration and microbial biomass carbon and nitrogen. Environ Sci, 2021, 42: 450-458. (in Chinese with English abstract)
doi: 10.1021/es071992c
[23] 李亚森, 丁松爽, 殷全玉, 李佳轶, 周迪, 刘国顺. 多年施用生物炭对河南烤烟种植区土壤呼吸的影响. 环境科学, 2019, 40: 915-923.
Li Y S, Ding S S, Yin Q Y, Li J Y, Zhou D, Liu G S. Effects of multi-year application of biochar on soil respiration in Henan flue-cured tobacco planting area. Environ Sci, 2019, 40: 915-923. (in Chinese with English abstract)
[24] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应. 生态学报, 2018, 38: 393-404.
Xu M, Wu J, Zhang X H, Yang G. Carbon sequestration and emission reduction potential of biochar application and farmland effect. Acta Ecol Sin, 2018, 38: 393-404. (in Chinese with English abstract)
[25] Huang R, Lan M L, Liu J, Gao M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environ Sci Poll Res, 2017, 24: 27942-27952.
doi: 10.1007/s11356-017-0372-9
[26] Tian X P, Wang L, Hou Y H, Wang H, Tsang V F, Wu J H. Responses of soil microbial community structure and activity to incorporation of straws and straw biochars and their effects on soil respiration and soil organic carbon turnover. Pedosphere, 2019, 29: 492-503.
doi: 10.1016/S1002-0160(19)60813-1
[27] Tang Y, Gao W C, Cai K, Chen Y, Li C B, Lee X Q, Cheng H G, Zhang Q H, Cheng J Z. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of southwest China. Geoderma, 2021, 55: 114895.
[28] 刘杏认, 张星, 张晴雯, 李贵春, 张庆忠. 施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响. 生态学报, 2017, 37: 6700-6711.
Liu X R, Zhang X, Zhang Q W, Li G C, Zhang Q Z. Effects of biochar application and straw returning on CO2 and N2O emissions from farmland in North China. Acta Ecol Sin, 2017, 37: 6700-6711. (in Chinese with English abstract)
[29] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep, 2014, 4: 3687.
doi: 10.1038/srep03687 pmid: 24446050
[30] Pangle R E, Seiler J. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Environ Poll, 2002, 116: S85-S96.
[31] 田冬, 高明, 黄容, 吕盛, 徐畅. 油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应. 环境科学, 2017, 38: 2988-2999.
Tian D, Gao M, Huang R, Lyu S, Xu C. Response of soil respiration and heterotrophic respiration to straw and biochar returning in rape/maize rotation farmland. Environ Sci, 2017, 38: 2988-2999. (in Chinese with English abstract)
[32] Kuzyakov Y, Ehrensberger H, Stahr K. Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem, 2001, 33: 61-74.
doi: 10.1016/S0038-0717(00)00115-2
[33] 鲁琪飞, 叶协锋, 韩金, 潘昊东, 张明杰, 王晶, 杨佳豪, 姚鹏伟, 李雪利. 添加有机物料对豫中烟田土壤呼吸的影响. 环境科学, 2022, 43: 3825-3834.
Lu Q F, Ye X F, Han J, Pan H D, Zhang M J, Wang J, Yang J H, Yao P W, Li X L. Effects of adding organic materials on soil respiration in tobacco fields in central Henan. Environ Sci, 2022, 43: 3825-3834. (in Chinese with English abstract)
[34] Jones D L, Murphy D V, Khalid M, Ahmad W, Edwards-Jones G, DeLuca T H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem, 2011, 43: 1723-1731.
doi: 10.1016/j.soilbio.2011.04.018
[35] Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol, 2006, 12: 154-164.
doi: 10.1111/gcb.2006.12.issue-2
[36] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤呼吸的影响及机理. 农业工程学报, 2014, 30(19): 155-165.
Zhao Y L, Xue Z W, Guo H B, Guo H B, Li C H. Effects of tillage methods and straw returning on soil respiration and its mechanism. Trans CSAE, 2014, 30(19): 155-165. (in Chinese with English abstract)
[37] Wang X J, Chen G H, Wang S Y, Zhang L Y, Zhang R D. Temperature sensitivity of different soil carbon pools under biochar addition. Environ Sci Poll Res, 2019, 26: 4130-4140.
doi: 10.1007/s11356-018-3822-0
[38] 李艾蒙. 外源玉米秸秆碳对土壤有机碳激发效应和温度敏感性的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Li A M. Effects of Exogenous Corn Straw Carbon on Soil Organic Carbon Excitation Effect and Temperature Sensitivity. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[39] 王新源, 李玉霖, 赵学勇, 毛伟, 崔夺, 曲浩, 连杰, 罗永清. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 2012, 32: 4890-4901.
Wang X Y, Li Y L, Zhao X Y, Mao W, Cui D, Qu H, Lian J, Luo Y Q. Research progress on the effects of different environmental factors on soil respiration in arid and semi-arid areas. Acta Ecol Sin, 2012, 32: 4890-4901. (in Chinese with English abstract)
[40] Lu N, Liu X R, Du Z L, Wang Y D, Zhang Q Z. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Res, 2014, 38: 505-512.
[41] 张丁辰, 蔡典雄, 代快, 冯宗会, 张晓明, 王小彬. 旱作农田不同耕作土壤呼吸及其对水热因子的响应. 生态学报, 2013, 33: 1916-1925.
Zhang D C, Cai D X, Dai K, Feng Z H, Zhang X M, Wang X B. Soil respiration under different tillage and its response to hydrothermal factors in dryland farmland. Acta Ecol Sin, 2013, 33: 1916-1925. (in Chinese with English abstract)
[42] Singh S, Jagadamma S, Liang J Y, Kivlin S N, Mayes M A. Differential organic carbon mineralization responses to soil moisture in three different soil orders under mixed forested system. Front Environ Sci, 2021, 9: 682450.
doi: 10.3389/fenvs.2021.682450
[43] Keiluweit M, Nico P S, Kleber M, Fendorf S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils. Biogeochemistry, 2016, 127: 157-171.
doi: 10.1007/s10533-015-0180-6
[44] Liu X Y, Zheng J F, Zhang D X, Cheng K, Zhou H M, Zhang A F, Li L Q, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan G X. Biochar has no effect on soil respiration across Chinese agricultural soils. Sci Total Environ, 2016, 45: 259-265.
[45] 张鹏, 李涵, 贾志宽, 王维, 路文涛, 张惠, 杨宝平. 秸秆还田对宁南旱区土壤有机碳含量及土壤碳矿化的影响. 农业环境科学学报, 2011, 30: 2518-2525.
Zhang P, Li H, Jia Z K, Wang W, Lu W T, Zhang H, Yang B P. Effect of straw on soil organic carbon content in dryland. J Agric Environ Sci, 2011, 30: 2518-2525 (in Chinese with English abstract).
[46] 刘青丽, 蒋雨洲, 邹焱, 张云贵, 张恒, 石俊雄, 李志宏. 烟田生态系统碳收支研究. 作物学报, 2020, 46: 1258-1265.
doi: 10.3724/SP.J.1006.2020.94164
Liu Q L, Jiang Y Z, Zou Y, Zhang Y G, Zhang H, Shi J X, Li Z H. Study on carbon budget of tobacco field ecosystem. Acta Agron Sin, 2020, 46: 1258-1265. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94164
[1] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应[J]. 作物学报, 2023, 49(5): 1316-1326.
[2] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[5] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[6] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679.
[7] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[8] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[9] 张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18.
[10] 刘青丽,蒋雨洲,邹焱,张云贵,张恒,石俊雄,李志宏. 烟田生态系统碳收支研究[J]. 作物学报, 2020, 46(8): 1258-1265.
[11] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[12] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[13] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[14] 陈玉章,田慧慧,李亚伟,柴雨葳,李瑞,程宏波,常磊,柴守玺. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响[J]. 作物学报, 2019, 45(5): 714-727.
[15] 李成江,李大肥,周桂夙,许龙,徐天养,赵正雄. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响[J]. 作物学报, 2019, 45(2): 289-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .