• •
王芬1,吴东丽2,张全军2,*
WANG Fen1,WU Dong-Li2,ZHANG Quan-Jun2,*
摘要:
为了深入研究一季稻发育期及发育期长度(Growth periods lengths,GLs)对气候变化的响应,基于1991—2020年湖北省5个农业气象观测站发育期观测数据和逐日气象数据,分析了湖北省一季稻发育期及GLs的变化特征,量化了发育期及GLs变化对日平均气温、日平均地温、气温日较差、相对湿度、降水量、日照时数的敏感性。结果表明,1991—2020年湖北省一季稻发育期以推后趋势为主(平均2.97 d 10 a?1),即每10年平均推后2.97 d,其中成熟期推后趋势最明显(4.99 d 10 a?1)。GLs以延长的趋势为主(3.22 d 10 a?1),其中分蘖—拔节延长趋势最明显(8.17 d 10 a?1)。发育期及其长度的变化对日平均气温敏感性最高。其中日平均气温与移栽、返青、分蘖、拔节相关系数分别为?0.59、?0.45、?0.47和?0.49 (P < 0.05)。日平均气温对拔节—孕穗、孕穗—抽穗、抽穗—乳熟、生殖生长期的敏感系数别为7.79、7.62、5.69和9.17。研究表明,影响湖北省一季稻发育期的主导气候因子是气温、地温和气温日较差,而相对湿度、降水和日照时数作用较小。然而气候因子也只能解释发育期及其长度变异的48.22%,可以推测除了气候因子之外,一季稻发育期及其长度变化可能还受到品种更换、技术进步及栽培管理方式变化等因素的综合影响,未来的研究可以考虑量化这些因素的贡献率。
[1] IPCC. Climate Change 2021: the Physical Science Basis. [2021-08-01], https://www.ipcc.ch/report/ar6/wg1/. [2] ARA B R, LEMPERT R, ALI E. Point of Departure and Key Concepts. Cambridge: Cambridge University Press, 2023. pp 121–196. [3] 中国气象局气候变化中心. 中国气候变化蓝皮书(2023). 北京: 科学出版社, 2023. Climate Change Center of China Meteorological Administration. China Climate Change Blue Book (2023). Beijing: Science Press, 2023 (in Chinese). [4] 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化. 气候变化研究进展, 2021, 17: 713–718. Zhou B T, Qian J. Changes of weather and climate extremes in the IPCC AR6. Clim Change Res, 2021, 17: 713–718 (in Chinese with English abstract). [5] 《第四次气候变化国家评估报告》编写委员会. 第四次气候变化国家评估报告. 北京: 科学出版社, 2022. Editorial Board of 《Fourth National Assessment Report on Climate Change》. Fourth National Assessment Report on Climate Change. Beijing: Science Press, 2022 (in Chinese). [6] 杨沈斌, 申双和, 赵小艳, 赵艳霞, 许吟隆, 王主玉, 刘娟, 张玮玮. 气候变化对长江中下游稻区水稻产量的影响. 作物学报, 2010, 36: 1519–1528. Yang S B, Shen S H, Zhao X Y, Zhao Y X, Xu Y L, Wang Z Y, Liu J, Zhang W W. Impacts of climate changes on rice production in the middle and lower reaches of the Yangtze River. Acta Agron Sin, 2010, 36: 1519–1528 (in Chinese with English abstract). [7] 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展. 中国水稻科学, 2019, 33: 206–218. Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism. Chin J Rice Sci, 2019, 33: 206–218 (in Chinese with English abstract). [8] Ray D K, Gerber J S, MacDonald G K, West P C. Climate variation explains a third of global crop yield variability. Nat Commun, 2015, 6: 5989. [9] Heino M, Puma M J, Ward P J, Gerten D, Heck V, Siebert S, Kummu M. Two-thirds of global cropland area impacted by climate oscillations. Nat Commun, 2018, 9: 1257 [10] Campbell B M, Vermeulen S J, Aggarwal P K, Corner-Dolloff C, Girvetz E, Loboguerrero A M, Ramirez-Villegas J, Rosenstock T, Sebastian L, Thornton P K, et al. Reducing risks to food security from climate change. Glob Food Secur, 2016, 11: 34–43. [11] 徐富贤, 周兴兵, 张林, 蒋鹏, 刘茂, 朱永川, 郭晓艺, 熊洪. 四川盆地东南部气象因子对杂交中稻产量的影响. 作物学报, 2018, 44: 601–613. Xu F X, Zhou X B, Zhang L, Jiang P, Liu M, Zhu Y C, Guo X Y, Xiong H. Effects of climatic factors in the southeast of Sichuan basin on grain yield of mid-season hybrid rice. Acta Agron Sin, 2018, 44: 601–613 (in Chinese with English abstract). [12] 徐富贤, 周兴兵, 张林, 蒋鹏, 刘茂, 朱永川, 熊洪, 刘运军, 徐麟, 郭晓艺. 气候变暖对稻米品质的影响与杂交组合及其亲本的关系. 中国生态农业学报(中英文), 2024, 32: 1−14 Xu F X, Zhou X B, Zhang L, Jing P, Liu M, Zhu Y C, Xiong H, Liu Y J, Xu L, Guo X Y. Effects of climate warming on rice quality in relation to hybrid combinations and their parents. Chin J Eco-Agric, 2024, 32: 1−14 (in Chinese with English abstract). [13] 刘苇航, 叶涛, 史培军, 陈说. 气候变化对粮食生产风险的影响研究进展. 自然灾害学报, 2022, 31(4): 1–11. Liu W H, Ye T, Shi P J, Chen S. Advances in the study of climate change impact on crop producing risk. J Nat Disasters, 2022, 31(4): 1–11 (in Chinese with English abstract). [14] MacLean J L, Dawe D C, Hettel G P. Rice Almanac: Source Book for the Most Important Economic Activity on Earth. 3rd edn. Oxon, UK: CABI Pub., 2002. [15] 梅方权, 吴宪章, 姚长溪, 李路平, 王磊, 陈秋云. 中国水稻种植区划. 中国水稻科学, 1988, 2: 97–110. Mei F Q, Wu X Z, Yao C X, Li L P, Wang L, Chen Q Y. Rice cropping regionalization in China. Chin J Rice Sci, 1988, 2: 97–110 (in Chinese with English abstract). [16] 宁晓菊, 张丽君, 秦耀辰, 刘凯. 60年来我国主要粮食作物适宜生长区的时空分布. 地球科学进展, 2019, 34: 191–201. Ning X J, Zhang L J, Qin Y C, Liu K. Temporal-spatial distribution of suitable areas for major food crops in China over 60 years. Adv Earth Sci, 2019, 34: 191–201 (in Chinese with English abstract). [17] Chen W F, Xu Z J, Tang L. 20 years’ development of super rice in China: The 20th anniversary of the super rice in China. J Integr Agric, 2017, 16: 981–983. [18] Liu Y J, Bachofen C, Wittwer R, Silva Duarte G, Sun Q, Klaus V H, Buchmann N. Using PhenoCams to track crop phenology and explain the effects of different cropping systems on yield. Agric Syst, 2022, 195: 103306. [19] Wang Z B, Chen J, Tong W J, Xu C C, Chen F. Impacts of climate change and varietal replacement on winter wheat phenology in the North China Plain. Int J Plant Prod, 2018, 12: 251–263. [20] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应. 作物学报, 2023, 49: 1305–1315. Liu E H, Zhou G S, Wu B Y, Song Y L, He Q J, Lyu X M, Zhou M Z. Response of reproductive growth period length to climate warming and tech-nological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice. Acta Agron Sin, 2023, 49: 1305–1315 (in Chinese with English abstract). [21] 张卫建, 陈长青, 江瑜, 张俊, 钱浩宇. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39: 805–811. Zhang W J, Chen C Q, Jiang Y, Zhang J, Qian H Y. Comprehensive influence of climate warming on rice production and countermeasure for food security in China. J Agro Environ Sci, 2020, 39: 805–811 (in Chinese with English abstract). [22] 陈金, 田云录, 董文军, 侯立刚, 马巍, 徐志宇, 张卫建. 东北水稻生长发育和产量对夜间升温的响应. 中国水稻科学, 2013, 27: 84–90. Chen J, Tian Y L, Dong W J, Hou L G, Ma W, Xu Z Y, Zhang W J. Responses of rice growth and grain yield to nighttime warming in Northeast China. Chin J Rice Sci, 2013, 27: 84–90 (in Chinese with English abstract). [23] 张卫建, 陈金, 徐志宇, 陈长青, 邓艾兴, 钱春荣, 董文军. 东北稻作系统对气候变暖的实际响应与适应. 中国农业科学, 2012, 45: 1265–1273. Zhang W J, Chen J, Xu Z Y, Chen C Q, Deng A X, Qian C R, Dong W J. Actual responses and adaptations of rice cropping system to global warming in Northeast China. Sci Agric Sin, 2012, 45: 1265–1273 (in Chinese with English abstract). [24] Wang X Y, Li T, Yang X G, Zhang T Y, Liu Z J, Guo E J, Liu Z Q, Qu H H, Chen X, Wang L Z, et al. Rice yield potential, gaps and constraints during the past three decades in a climate–changing Northeast China. Agric For Meteor, 2018, 259: 173–183. [25] Zhang S, Tao F L, Zhang Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur J Agron, 2014, 54: 70–83. [26] Hu X Y, Huang Y, Sun W J, Yu L F. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric For Meteor, 2017, 247: 34–41. [27] 韦剑锋, 李生, 梁和, 徐世宏, 江立庚. 育秧方式和壮秧剂对抛栽晚稻生长及产量的影响. 热带作物学报, 2012, 33: 1188–1192. Wei J F, Li S, Liang H, Xu S H, Jiang L G. Effects of seedling raising methods and seedling strengthen agent on plant growth and grain yield of cast transplanting rice in late season. Chin J Trop Crops, 2012, 33: 1188–1192 (in Chinese with English abstract). [28] Sheather S J. Density estimation. Statist Sci, 2004, 19: 588–597. [29] Silverman B W. Density Estimation for Statistics and Data Analysis. London: Routledge, 2018. [30] 马倩倩, 贺勇, 张梦婷, 张聪, 许吟隆. 中国北部冬麦区小麦生育期对生育阶段积温变化的响应. 中国农业气象, 2018, 39: 233–244. Ma Q Q, He Y, Zhang M T, Zhang C, Xu Y L. Responses of winter wheat phenology to accumulated temperature during growing periods in northern China wheat belt. Chin J Agrometeorol, 2018, 39: 233–244 (in Chinese with English abstract). [31] 张全军, 吴东丽, 宏观, 张波, 段后浪. 1981—2020年陕西安康冬小麦生育期对农业气象条件的响应. 麦类作物学报, 2024, 44: 1560–1572. Zhang Q J, Wu D L, Hong G, Zhang B, Duan H L. Response of winter wheat growth period in Ankang, Shaanxi to agrometeorological condition from 1981 to 2020. J Triticeae Crops, 2024, 44: 1560–1572 (in Chinese with English abstract). [32] Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change. Agric For Meteor, 2010, 150: 1443–1452. [33] Zhang S, Tao F L, Zhang Z. Changes in extreme temperatures and their impacts on rice yields in Southern China from 1981 to 2009. Field Crops Res, 2016, 189: 43–50. [34] 徐富贤, 熊洪, 张林, 朱永川, 刘茂, 蒋鹏, 郭晓艺, 周兴兵. 南方稻区杂交中籼稻高产品种的库源结构及其优化调控规律研究进展. 中国生态农业学报, 2016, 24: 1285–1299. Xu F X, Xiong H, Zhang L, Zhu Y C, Liu M, Jiang P, Guo X Y, Zhou X B. Research progresses and prospects of sink-source structures and optimal regulation of high-yield varieties of hybrid rice in China. Chin J Eco-Agric, 2016, 24: 1285–1299 (in Chinese with English abstract) [35] 邓环, 万素琴, 刘敏, 刘志雄, 邓爱娟. 气候变化对1981年以来湖北省中稻生育期的影响. 华中农业大学学报, 2013, 32(2): 84–89. Deng H, Wan S Q, Liu M, Liu Z X, Deng A J. Effects of climate change on growing stage of mid-season rice in Hubei Province since 1981. J Huazhong Agric Univ, 2013, 32(2): 84–89 (in Chinese with English abstract). [36] Tao F L, Zhang Z, Shi W J, Liu Y J, Xiao D P, Zhang S, Zhu Z, Wang M, Liu F S. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Glob Chang Biol, 2013, 19: 3200–3209. [37] 冯向前, 殷敏, 王孟佳, 马横宇, 刘元辉, 褚光, 徐春梅, 章秀福, 王丹英, 张运波, 等. 播期对长江下游不同类型晚稻品种产量的影响及其与水稻全育期温光资源配置间关系. 作物学报, 2022, 48: 2597–2613. Feng X Q, Yin M, Wang M J, Ma H Y, Liu Y H, Chu G, Xu C M, Zhang X F, Wang D Y, Zhang Y B, et al. Effects of sowing date on the yield of different late rice variety types and its relationship with the allocation of temperature and light resources during the whole growth period of rice in the lower reaches of the Yangtze River. Acta Agron Sin, 2022, 48: 2597–2613 (in Chinese with English abstract). [38] 徐富贤, 洪松. 水稻旱育秧的增产原理与应用效果评价. 西南农业学报, 1996, 9(4): 12–16. Xu F X, Hong S. Yield-increasing principle and application effect evaluation of dry-raised rice seedlings. Southwest China J Agric Sci, 1996, 9(4): 12–16 (in Chinese with English abstract). [39] 许轲, 孙圳, 霍中洋, 戴其根, 张洪程, 刘俊, 宋云生, 杨大柳, 魏海燕, 吴爱国, 等. 播期、品种类型对水稻产量、生育期及温光利用的影响. 中国农业科学, 2013, 46: 4222–4233. Xu K, Sun Z, Huo Z Y, Dai Q G, Zhang H C, Liu J, Song Y S, Yang D L, Wei H Y, Wu A G, et al. Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice. Sci Agric Sin, 2013, 46: 4222–4233 (in Chinese with English abstract). [40] Bai H Z, Xiao D P, Zhang H, Tao F L, Hu Y H. Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981–2010. Int J Biometeorol, 2019, 63: 1077–1089. [41] 邓南燕. 中国水稻产量差评估及长江中下游地区增产途径探究. 华中农业大学博士学位论文, 湖北武汉, 2018. Deng N Y. Evaluation of Rice Yield Difference in China and Exploration of Ways to Increase Production in the Middle and Lower Reaches of the Yangtze River. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). [42] 陈天晔, 袁嘉琦, 刘艳阳, 许轲, 郭保卫, 戴其根, 霍中洋, 张洪程, 李国辉, 魏海燕. 江淮下游不同播期对稻–麦周年作物产量、品质及温光资源利用的影响. 作物学报, 2020, 46: 1566–1578. Chen T Y, Yuan J Q, Liu Y Y, XU K, GUO B W, DAI Q G, HUO Z Y, ZHANG H C, LI G H, WEI H Y. Effects of different sowing dates on crop yield, quality, and annual light-temperature resources utilization for rice–wheat double cropping system in the lower reaches of the Yangtze-Huaihe Rivers valley. Acta Agron Sin, 2020, 46: 1566–1578 (in Chinese with English abstract). [43] 刘猷红, 张俊, 唐傲, 刘凯, 张喜娟, 董文军, 孟英, 来永才. 播期对寒地粳稻产量及温光资源利用的影响. 中国稻米, 2022, 28(6): 113–117. Liu Y H, Zhang J, Tang A, Liu K, Zhang X J, Dong W J, Meng Y, Lai Y C. Effects of sowing date on yield and utilization of temperature and sunshine resource of Japonica rice in cold regions. China Rice, 2022, 28(6): 113–117 (in Chinese with English abstract). [44] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323–334. Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323–334 (in Chinese with English abstract). [45] Liu Y J, Zhou W M, Ge Q S. Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010. Clim Change, 2019, 157: 261–277. [46] Zhang L, Yang B Y, Li S, Hou Y Y, Huang D P. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric For Meteorol, 2018, 248: 185–196. [47] Meng L, Wang C Y, Zhang J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. J Meteor Res, 2016, 30: 426–443. [48] Wang Y L, Wang L, Zhou J X, Hu S B, Chen H Z, Xiang J, Zhang Y K, Zeng Y J, Shi Q H, Zhu D F, et al. Research progress on heat stress of rice at flowering stage. Rice Sci, 2019, 26: 1–10. [49] Wu C, Cui K H, Li Q, Li L Y, Wang W C, Hu Q Q, Ding Y F, Li G H, Fahad S, Huang J L, et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep, 2021, 11: 13604. [50] Muleke A, Liu K, Yanotti M, Eisner R. Earlier crop flowering caused by global warming alleviated by irrigation. Environ Res Lett, 2022, 17: 044032. [51] Tang S, Zhang H X, Li L, Liu X, Chen L, Chen W Z, Ding Y F. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Funct Plant Biol, 2018, 45: 911–921. |
[1] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[2] | 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477. |
[3] | 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应[J]. 作物学报, 2024, 50(11): 2860-2869. |
[4] | 成华强, 侯青青, 朱敏, 杨轩. 气候变化与轮作制度对晋北饲用燕麦产草量的影响[J]. 作物学报, 2024, 50(10): 2599-2613. |
[5] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[6] | 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315. |
[7] | 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729. |
[8] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
[9] | 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107. |
[10] | 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231. |
[11] | 崔颖, 蔺宏宏, 谢云, 刘素红. AquaCrop模型在东北黑土区作物产量预测中的应用研究[J]. 作物学报, 2021, 47(1): 159-168. |
[12] | 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901. |
[13] | 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. |
[14] | 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415. |
[15] | 剧成欣, 周著彪, 赵步洪, 王志琴, 杨建昌. 不同氮敏感性粳稻品种的氮代谢与光合特性比较[J]. 作物学报, 2018, 44(03): 405-413. |
|